DOI QR코드

DOI QR Code

Electrochemical Anodic Formation of VO2 Nanotubes and Hydrogen Sorption Property

  • Lee, Hyeonkwon (Research Institute of Environmental Science & Technology, Kyungpook National University) ;
  • Jung, Minji (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Kiyoung (Research Institute of Environmental Science & Technology, Kyungpook National University)
  • Received : 2020.08.12
  • Accepted : 2020.10.28
  • Published : 2021.05.28

Abstract

We investigated the feasibility of hydrogen storage with electrochemically formed VO2 nanotubes. The VO2 nanotubes were fabricated through the anodization of vanadium metal in fluoride ion-containing organic electrolyte followed by an annealing process in an Ar-saturated atmosphere at 673 K for 3 h at a heating rate of 3 K /min. During anodization, the current density significantly increased up to 7.93 mA/cm2 for approximately 500 s owing to heat generation, which led to a fast-electrochemical etching reaction of the outermost part of the nanotubes. By controlling the anodization temperature, highly ordered VO2 nanotubes were grown on the metal substrate without using any binders or adhesives. Furthermore, we demonstrated the hydrogen sorption properties of the anodic VO2 nanotubes.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A6A1A03024962. NRF-2019M3E6A1103980).

References

  1. E. Tzimas, C. Filiou, S.D. Peteves, J.B. Veyret, EU Cimmission, JRC Petten, 2003.
  2. C. Rivkin, R. Burgess, W. Buttner, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2015
  3. I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, Energ. Environ. Sci., 2019 12, 463-491. https://doi.org/10.1039/C8EE01157E
  4. A. Zuttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenegger, L. Schlapbach, Int. J. Hydrog. Energ., 2002, 27(2), 203-212. https://doi.org/10.1016/S0360-3199(01)00108-2
  5. A. Anson, M.A. Callejas, A.M. Benito, W.K. Maser, M.T. Izquierdo, B. Rubio, J. Jagiello, M. Thommes, J.B. Parra, M.T. Martinez, Carbon., 2004, 42(7), 1243-1248. https://doi.org/10.1016/j.carbon.2004.01.038
  6. Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, H.K. Liu, J. Alloys Compd., 2007, 427(1-2), 94-100. https://doi.org/10.1016/j.jallcom.2006.03.069
  7. J.M. Juarez, M.B. Gomez Costa, O.A. Anunziata, Int. J. Energy Res., 2015, 39(1), 128-139. https://doi.org/10.1002/er.3229
  8. H. Yoon, M. Choi, T.W. Lim, H. Kwon, K. Ihm, J.K. Kim, S.Y. Choi, J. Son, Nat. Mater., 2016, 15(10), 1113-1119. https://doi.org/10.1038/nmat4692
  9. K. Lee, A. Mazare, P. Schmuki, Chem. Rev., 2014, 114(19), 9385-9454. https://doi.org/10.1021/cr500061m
  10. J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. Engl., 2005, 44(14), 2100-2102. https://doi.org/10.1002/anie.200462459
  11. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. Engl., 2011, 50(13), 2904-2939. https://doi.org/10.1002/anie.201001374
  12. H.K. Lee, H. Oh, K. Lee, J. Korean Inst. Surf. Eng., 2018, 51(1), 27-33 https://doi.org/10.5695/JKISE.2018.51.1.27
  13. S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, Phys. Status Solidi RRL., 2007, 1(2), R65-R67. https://doi.org/10.1002/pssr.200600069
  14. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, J. Phys. Chem C., 2007, 111(41), 14992-14997. https://doi.org/10.1021/jp075258r
  15. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem C., 2007, 111(20), 7235-7241. https://doi.org/10.1021/jp070273h
  16. R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid-State Lett., 2003, 6(3), B12. https://doi.org/10.1149/1.1545192
  17. K. Lee, Appl. Chem. Eng., 2017, 28(6), 601-606 https://doi.org/10.14478/ace.2017.1011
  18. H. Lee, V.S. Kumbhar, J. Lee, Y. Choi, K. Lee, Electrochim. Acta., 2020, 334, 135618. https://doi.org/10.1016/j.electacta.2020.135618
  19. Y. Yang, S.P. Albu, D. Kim, P. Schmuki, Angew. Chem. Int. Ed. Engl., 2011, 50(39), 9071-9075. https://doi.org/10.1002/anie.201104029
  20. Y. Yang, K. Lee, M. Zobel, M. Mackovic, T. Unruh, E. Spiecker, P. Schmuki, Adv. Mater., 2012, 24(12), 1571-1575. https://doi.org/10.1002/adma.201200073
  21. H. Lee, V.S. Kumbhar, J. Lee, H. Oh, K. Lee, Catal. Today, 2021, 359, 3-8. https://doi.org/10.1016/j.cattod.2019.03.066
  22. G. Cha, K. Lee, J. Yoo, M.S. Killian, P. Schmuki, Electrochim. Acta., 2015, 179, 423-430. https://doi.org/10.1016/j.electacta.2015.02.127
  23. E.T. Drew, Y. Yang, J.A. Russo, M.L. Campbell, S.A. Rackley, J. Hudson, P. Schmuki, D.C. Whitehead, Catal. Sci. Technol., 2013, 3(10), 2610-2613. https://doi.org/10.1039/c3cy00183k
  24. Y. Yang, D. Kim, P. Schmuki, Electrochem. Commun., 2011, 13(11), 1198-1201. https://doi.org/10.1016/j.elecom.2011.08.045
  25. D. Lee, H. Lee, Y.-T. Kim, K. Lee, J. Choi, Electrochim. Acta., 2020, 330, 135192. https://doi.org/10.1016/j.electacta.2019.135192