DOI QR코드

DOI QR Code

Spatial and Temporal Genetic Diversity and Population Structure of Hemileia vastatrix from Peruvian Coffee Plantations

  • Received : 2020.10.14
  • Accepted : 2021.05.05
  • Published : 2021.06.01

Abstract

Population genetic studies of Hemileia vastatrix have been conducted in order to describe the evolutionary dynamics of the pathogen and the disease epidemiology as consequence of changes in disease management and host distribution occurred in Peru after the 2013 epidemic. These analyses were performed by sequencing the internal transcribed spacers of the nuclear ribosomal DNA (rDNA-ITS) of H. vastatrix collected from two coffee growing areas in 2014 and 2018. H. vastatrix population showed high haplotype diversity (Hd = 0.9373 ± 0.0115) with a low nucleotide diversity (π = 0.00322 ± 0.00018). Likewise, AMOVA indicated that fungus population has behaved as a large population without structuring by geographical origin and sampling years (FST = 0.00180, P = 0.20053 and FST = 0.00241, P = 0.19693, respectively). Additionally, the haplotype network based on intraspecific phylogenetic analysis of H. vastatrix using Peruvian and NCBI sequences revealed that Peruvian ancestral haplotypes, which were maintained in time and space, would correspond to the reported sequences of the races II and XXII. This result suggests that no substantial changes have occurred through time in Peruvian Hemileia vastatrix population.

Keywords

Acknowledgement

This research was supported by project N° 177-2015 FONDECYT (The National Fund for Scientific and Technological Development) and Universidad Nacional Agraria La Molina, Peru.

References

  1. Aggarwal, R., Kulshreshtha, D., Sharma, S., Singh, V. K., Manjunatha, C., Bhardwaj, S. C. and Saharan, M. S. 2018. Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp tritici and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genet. Mol. Biol. 41:834-842. https://doi.org/10.1590/1678-4685-gmb-2017-0171
  2. Althoff, D. M. and Pellmyr, O. 2002. Examining genetic structure in a bogus yucca moth: a sequential approach to phylogeography. Evolution 56:1632-1643. https://doi.org/10.1111/j.0014-3820.2002.tb01475.x
  3. Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Laderach, P., Anzueto, F., Hruska, A. J. and Morales, C. 2015. The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Secur. 7:303-321. https://doi.org/10.1007/s12571-015-0446-9
  4. Bandelt, H. J., Forster, P. and Rohl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  5. Berkeley, M. J. and Broome, C. E. 1869. Hemileia vastatrix. Gard. Chron. 6:1157.
  6. Bettencourt, A. J. 1981. Melhoramento genetico do cafeeiro. Transferencia de factores de resistencia a H. vastatrix Berk & Br. para as principais cultivares de Coffea arabica L. Centro de Investigacao das Ferrugens do Cafeeiro, Lisboa, Portugal. 93 pp.
  7. Bettencourt, A. J. and Rodrigues, C. J. Jr. 1988. Principles and practice of coffee breeding for resistance to rust and other diseases. In: Coffee, Vol. 4. Agronomy, eds. by R. J. Clarke and R. Macrae, pp. 199-234. Elsevier Applied Science Publishers, London, UK.
  8. Bhat, S. S., Hanumantha, B. T., Sounnderrajan, S., Barman, B., Varzea, V. M. P. and Jayarama, B. M. 2013. Characterization of virulent rust races of Hemileia vastatrix from traditional coffee regions of south India. J. Coffee Res. 41:61-74.
  9. Bowden, J., Gregory, P. H. and Johnson, C. G. 1971. Possible wind transport of coffee leaf rust across the Atlantic Ocean. Nature 229:500-501.
  10. Bradshaw, M., Grewe, F., Thomas, A., Harrison, C. H., Lindgren, H., Muggia, L., St. Clair, L. L., Lumbsch, H. T. and Leavitt, S. D. 2020. Characterizing the ribosomal tandem repeat and its utility as a DNA barcode in lichen-forming fungi. BMC Evol. Biol. 20:2. https://doi.org/10.1186/s12862-019-1571-4
  11. Cabral, P. G. C., Maciel-Zambolim, E., Oliveira, S. A. S., Caixeta, E. T. and Zambolim, L. 2016. Genetic diversity and structure of Hemileia vastatrix populations on Coffea spp. Plant Pathol. 65:196-204. https://doi.org/10.1111/ppa.12411
  12. Cabral, P. G. C., Zambolim, E. M., Zambolim, L., Lelis, T. P., Capucho, A. S. and Caixeta, E. T. 2009. Identification of a new race of Hemileia vastatrix in Brazil. Australas. Plant Dis. Notes 4:129-130.
  13. Carvalho, C. R., Fernandes, R. C., Carvalho, G. M. A., Barreto, R. W. and Evans, H. C. 2011. Cryptosexuality and the genetic diversity paradox in coffee rust, Hemileia vastatrix. PLoS ONE 6:e26387. https://doi.org/10.1371/journal.pone.0026387
  14. Chessel, D., Dufour, A. B. and Thioulouse, J. 2004. The ade4 package-I: one-table methods. R News 4:5-10.
  15. Cristancho, M. A., Botero-Rozo, D. O., Giraldo, W., Tabima, J., Riano-Pachon, D. M., Escobar, C., Rozo, Y., Rivera, L. F., Duran, A., Restrepo, S., Eilam, T., Anikster, Y. and Gaitan, A. L. 2014. Annotation of a hybrid genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales. Front. Plant Sci. 5:594.
  16. Cristancho, A. M., Escobar, O. C. and Ocampo, J. D. 2007. Evolucion de razas de Hemileia vastatrix en Colombia. Cenicafe 58:340-359.
  17. Diaz, V. C. and Carmen, M. C. 2017. Linea de base del sector cafe en el Peru. Programa de las Naciones Unidas para el Desarrollo - PNUD. URL https://www.pe.undp.org/content/peru/es/home/library/environment_energy/linea-de-base-delsector-cafe-en-el-peru.html [27 July 2020].
  18. Diniz, I., Talhinhas, P., Azinheira, H. G., Varzea, V., Medeira, C., Maia, I., Petitot, A.-S., Nicole, M., Fernandez, D. and Silva, M. C. 2012. Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. Eur. J. Plant Pathol. 133:141-157. https://doi.org/10.1007/s10658-011-9925-9
  19. Estensmo, E. L. F., Maurice, S., Morgado, L., Martin-Sanchez, P. M., Skrede, I. and Kauserud, H. 2021. The influence of intraspecific sequence variation during DNA metabarcoding: a case study of eleven fungal species. Mol. Ecol. Resour. 21:1141-1148. https://doi.org/10.1111/1755-0998.13329
  20. Excoffier, L. and Lischer, H. E. L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  21. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915-925. https://doi.org/10.1093/genetics/147.2.915
  22. Fu, Y. X. and Li, W. H. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709. https://doi.org/10.1093/genetics/133.3.693
  23. Gichuru, E. K., Ithiru, J. M., Silva, M. C., Pereira, A. P. and Varzea, V. M. P. 2012. Additional physiological races of coffea leaf rust (Hemileia vastatrix) identified in Kenya. Trop. Plant Pathol. 37:424-427. https://doi.org/10.1590/S1982-56762012000600008
  24. Golosova, O., Henderson, R., Vaskin, Y., Gabrielian, A., Grekhov, G., Nagarajan, V., Oler, A. J., Quinones, M., Hurt, D., Fursov, M. and Huyen, Y. 2014. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2:e644. https://doi.org/10.7717/peerj.644
  25. INEI (Instituto Nacional de Estadistica e Informatica). 2014. Compendio estadistico del Peru. URL https://www.inei.gob.pe/media/MenuRecursivo/publicacionesdigitales/Est/Lib1173/cap12/cap12.pdf [1 September 2016].
  26. Kolmer, J. A. and Ordonez, M. E. 2007. Genetic differentiation of Puccinia triticina populations in Central Asia and the Caucasus. Phytopathology 97:1141-1149. https://doi.org/10.1094/PHYTO-97-9-1141
  27. Kosaraju, B., Sannasi, S., Mishra, M. K., Subramani, D. and Bychappa, M. 2017. Assessment of genetic diversity of coffee leaf rust pathogen Hemileia vastatrix using SRAP markers. J. Phytopathol. 165:486-493. https://doi.org/10.1111/jph.12583
  28. Larsson, A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276-3278. https://doi.org/10.1093/bioinformatics/btu531
  29. Lashermes, P., Cros, J., Marmey, P. and Charrier, A. 1993. Use of random amplified DNA markers to analyse genetic variability and relationships of Coffea species. Genet. Resour. Crop Evol. 40:91-99. https://doi.org/10.1007/BF00052639
  30. Leigh, J. W. and Bryant, D. 2015. PopART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6:1110-1116. https://doi.org/10.1111/2041-210X.12410
  31. Lindner, D. L., Carlsen, T., Henrik Nilsson, R., Davey, M., Schumacher, T. and Kauserud, H. 2013. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol. Evol. 3:1751-1764. https://doi.org/10.1002/ece3.586
  32. Liu, T.-G., Ge, R.-J., Ma, Y.-T., Liu, B., Gao, L. and Chen, W.-Q. 2018. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences. J. Integr. Agric. 17:1779-1789. https://doi.org/10.1016/S2095-3119(18)61923-9
  33. Maia, T. A., Maciel-Zambolim, E., Caixeta, E. T., Mizubuti, E. S. G. and Zambolim, L. 2013. The population structure of Hemileia vastatrix in Brazil inferred from AFLP. Australas. Plant Pathol. 42:533-542.
  34. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209-220.
  35. McCain, J. W. and Hennen, J. F. 1984. Development of the uredinial thallus and sorus in the orange coffee rust fungus, Hemileia vastatrix. Phytopathology 74:714-721. https://doi.org/10.1094/Phyto-74-714
  36. McDonald, B. A. and Linde, C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349-379. https://doi.org/10.1146/annurev.phyto.40.120501.101443
  37. Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  38. Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. and Larsson, K.-H. 2008. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4:193-201.
  39. Porto, B. N., Caixeta, E. T., Mathioni, S. M., Vidigal, P. M. P., Zambolim, L., Zambolim, E. M., Donofrio, N., Polson, S. W., Maia, T. A., Chen, C., Adetunji, M., Kingham, B., Dalio, R. J. D. and De Resende, M. L. V. 2019. Genome sequencing and transcript analysis of Hemileia vastatrix reveal expression dynamics of candidate effectors dependent on host compatibility. PLoS ONE 14:e0215598. https://doi.org/10.1371/journal.pone.0215598
  40. Quispe-Apaza, C. S., Mansilla-Samaniego, R. C., Lopez-Bonilla, C. F., Espejo-Joya, R., Villanueva-Caceda, J. and Monzon, C. 2017. Genetic diversity of Hemileia vastatrix of two coffee producing areas in Peru. Rev. Mex. Fitopatol. 35:418-436.
  41. R Development Core Team, 2014. R: a language and environment for statistical computing. URL http://www.R-project.org/ [27 July 2020].
  42. Rodrigues, C. J. Jr., Bettencourt, A. J. and Rijo, L. 1975. Races of the pathogen and resistance to coffee rust. Annu. Rev. Phytopathol. 13:49-70. https://doi.org/10.1146/annurev.py.13.090175.000405
  43. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. and Sanchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302. https://doi.org/10.1093/molbev/msx248
  44. Rozo, Y., Escobar, C., Gaitan A. and Cristancho, M. 2012. Aggressiveness and genetic diversity of Hemileia vastatrix during an epidemic in Colombia. J. Phytopathol. 160:732-740. https://doi.org/10.1111/jph.12024
  45. Santana, M. F., Zambolim, E. M., Caixeta, E. T. and Zambolim, L. 2018. Population genetic structure of the coffee pathogen Hemileia vastatrix in Minas Gerais, Brazil. Trop. Plant Pathol. 43:473-476. https://doi.org/10.1007/s40858-018-0246-9
  46. Schieber, E. and Zentmyer, G. A. 1984. Coffee rust in the Western Hemisphere. Plant Dis. 68:89-93. https://doi.org/10.1094/PD-69-89
  47. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W. and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. U. S. A. 109:6241-6246. https://doi.org/10.1073/pnas.1117018109
  48. Silva, D. N., Varzea, V., Paulo, O. S. and Batista, D. 2018. Population genomic footprints of host adaptation, introgression and recombination in coffee leaf rust. Mol. Plant Pathol. 19:1742-1753. https://doi.org/10.1111/mpp.12657
  49. Silva, R. A. 2017. Caracterizacao de racas fisiologicas e analise de proteinas candidatas a efetoras em populacao de Hemileia vastatrix no Brasil. D.S. thesis. Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brasil.
  50. Silva Acuna, R., Zambolim, L. and Perez Nieto, E. 1997. Identificacion de razas fisiologicas de la roya del cafeto en el estado Tachira, Venezuela. BioAgro 9:95-98.
  51. Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Popul. Biol. 12:253-262. https://doi.org/10.1016/0040-5809(77)90045-4
  52. Slatkin, M. and Hudson, R. R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555-562. https://doi.org/10.1093/genetics/129.2.555
  53. Tajima, F. 1989. Statistical methods to testing for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585-595. https://doi.org/10.1093/genetics/123.3.585
  54. Talhinhas, P., Batista, D., Diniz, I., Viera, A., Silva, D. N., Loureiro, A., Tavares, S., Pereira, A. P., Azinheira, H. G., GuerraGuimaraes, L., Varzea, V. and Silva, M. D. C. 2017. The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Mol. Plant Pathol. 18:1039-1051. https://doi.org/10.1111/mpp.12512
  55. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512-526.
  56. Wang, X. and McCallum, B. 2009. Fusion body formation, germ tube anastomosis, and nuclear migration during the germination of urediniospores of the wheat leaf rust fungus, Puccinia triticina. Phytopathology 99:1355-1364. https://doi.org/10.1094/PHYTO-99-12-1355
  57. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Shinsky and T. J. White, pp. 315-322. Academic Press, Inc., New York, NY, USA.
  58. Wu, W., Liu, B., Li, L., Huang, X., Liang, Y., Zheng, J., Wang, Q., Li, R., He, C. and Yi, K. 2018. The rDNA-ITS sequences analysis and phylogenetic relationships of Hemileia vastatrix. Chin. J. Trop. Crops 39:2250-2258.
  59. Zambolim, L. 2016. Current status and management of coffee leaf rust in Brazil. Trop. Plant Pathol. 41:1-8. https://doi.org/10.1007/s40858-016-0065-9