DOI QR코드

DOI QR Code

DERIVED FUNCTOR COHOMOLOGY GROUPS WITH YONEDA PRODUCT

  • Husain, Hafiz Syed (Department of Mathematical Sciences, Federal Urdu University of Arts, Science & Technology) ;
  • Sultana, Mariam (Department of Mathematical Sciences, Federal Urdu University of Arts, Science & Technology)
  • Received : 2020.05.31
  • Accepted : 2021.05.06
  • Published : 2021.05.31

Abstract

This work presents an exposition of both the internal structure of derived category of an abelian category D*(𝓐) and its contribution in solving problems, particularly in algebraic geometry. Calculation of some morphisms will be presented between objects in D*(𝓐) as elements in appropriate cohomology groups along with their compositions with the help of Yoneda construction under the assumption that the homological dimension of D*(𝓐) is greater than or equal to 2. These computational settings will then be considered under sheaf cohomological context with a particular case from projective geometry.

Keywords

Acknowledgement

The referees have reviewed the paper very carefully. The authors express their deep thanks for the comments.

References

  1. C. Bartocci, U. Bruzzo & D. H. Ruiper'ez: Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics. Progress in Mathematics Vol. 276, Birkauser, Boston, 2009.
  2. A. Bondal & M. Van den Bergh: Generators and Representability of Funcors in Commutative and Non-Commutative Geometry. Mosc. Math. J. 3 (2003), 1-36. https://doi.org/10.17323/1609-4514-2003-3-1-1-36
  3. H. Cartan & S. Eilenberg: Homological Algebra. Princeton University Press, Princeton, New Jersey, 1956.
  4. S.I. Gelfand & Yu I. Manin: Methods of Homological Algebra. Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
  5. J. Harris: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, Springer-Verlag, Vol 133. New York, 1992.
  6. R. Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag, New York, 1977.
  7. R. Hartshorne: Residue and Duality. Lecture Notes in Mathematics, Springer-Verlag, New York, 1966.
  8. D. Huybrechts: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs, Oxford University Press, New York, 2006.
  9. B. Iversen: Cohomology of Sheaves. Universitext, Springer-Verlag, 1986.
  10. S. Katz, T. Pantev & Eric Sharpe: D-Branes, Orbifolds and Ext Groups. Nuclear Physics B 673, (2003), 263-300. https://doi.org/10.1016/j.nuclphysb.2003.09.022
  11. M. Kontsevich: Homological Algebra of Mirror Symmetry. Proceedings of the International Congress of Mathematicians (Zurich, 1994), Birkauser, Boston, Volume 1995, 120139.
  12. S.M. Lane: Categories for the Working Mathematician. Springer-Verlag, New York, 1971.
  13. B. Lian, K. Liu & S.T. Yau: Mirror Principles-I. Asian J. Math 1 (1997), 729-763. https://doi.org/10.4310/AJM.1997.v1.n4.a5
  14. B. Lian, K. Liu & S.T. Yau: Mirror Principles-II. Asian J. Math 3 (1999), 109-146. https://doi.org/10.4310/AJM.1999.v3.n1.a6
  15. B. Lian, K. Liu & S.T. Yau: Mirror Principles-III. Asian J. Math 3 (1999), 771-800. https://doi.org/10.4310/AJM.1999.v3.n4.a4
  16. B. Lian, K. Liu & S.T. Yau: Mirror Principles-IV. Surv. Diff. Geom. VII, Volume 2000, 475-496.
  17. D. Orlov: Derived Categories of Coherent Sheaves and equivalences between them. Russian Math. Surveys 58 (2003), 511-591. https://doi.org/10.1070/RM2003v058n03ABEH000629
  18. R. Thomas: Derived Categories for the Working Mathematicians. arXiv Math, Article ID arXiv:math/0001045v2 [math.AG], 2001.
  19. C.A. Weibel: An Introduction to Homological Algebra. Cambridge University Press, Cambridge, 1994.