Acknowledgement
This study was supported by Project No. PJ01440101 for horticultural science and technological developments by the National Institute of Horticultural and Herbal Science, Rural Development Administration, Republic of Korea.
References
- Abdelkareem, A., Thagun, C., Nakayasu, M., Mizutani, M., Hashimoto, T. and Shoji, T. 2017. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem. Biophys. Res. Commun. 489:206-210. https://doi.org/10.1016/j.bbrc.2017.05.132
- Antico, C. J., Colon, C., Banks, T. and Ramonell, K. M. 2012. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol. 7:48-56. https://doi.org/10.1007/s11515-011-1171-1
- Audenaert, K., De Meyer, G. B. and Hofte, M. M. 2002. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128:491-501. https://doi.org/10.1104/pp.010605
- Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55:401-425. https://doi.org/10.1146/annurev-phyto-080516-035544
- Bitancourt, A. A. and Jenkins, A. E. 1936. Elsinoe fawcettii, the perfect stage of the citrus scab fungus. Phytopathology 26:393-395.
- Carvalho, K., de Campos, M. K. F., Pereira, L. F. P. and Vieira, L. G. E. 2010. Reference gene selection for real-time quantitative polymerase chain reaction normalization in "Swingle" citrumelo under drought stress. Anal. Biochem. 402:197-199. https://doi.org/10.1016/j.ab.2010.03.038
- Chung, K.-R. 2011. Elsinoe fawcettii and Elsinoe australis: the fungal pathogens causing citrus scab. Mol. Plant Pathol. 12:123-135. https://doi.org/10.1111/j.1364-3703.2010.00663.x
- De Vleesschauwer, D., Yang, Y., Cruz, C. V. and Hofte, M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036-2052. https://doi.org/10.1104/pp.109.152702
- Dewdney, J., Reuber, T. L., Wildermuth, M. C., Devoto, A., Cui, J., Stutius, L. M., Drummond, E. P. and Ausubel, F. M. 2000. Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J. 24:205-218. https://doi.org/10.1046/j.1365-313x.2000.00870.x
- Fan, W. and Dong, X. 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377-1389. https://doi.org/10.1105/tpc.001628
- Finkelstein, R. R., Gampala, S. S. and Rock, C. D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl:S15-S45. https://doi.org/10.1105/tpc.010441
- Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9:436-442. https://doi.org/10.1016/j.pbi.2006.05.014
- Gopal, K., Govindarajulu, B., Ramana, K. T. V., Kishore Kumar, C. S., Gopi, V., Gouri Sankar, T., Mukunda Lakshmi, L., Naga Lakshmi, T. and Sarada, G. 2014. Citrus scab (Elsinoe fawcettii): a review. Res. Rev. J. Agric. Allied Sci. 3:49-58.
- He, Y., Han, J., Liu, R., Ding, Y., Wang, J., Sun, L., Yang, X., Zeng, Y., Wen, W., Xu, J., Zhang, H., Yan, X., Chen, Z., Gu, Z., Chen, H., Tang, H., Deng, X. and Cheng, Y. 2018. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Hortic. Res. 5:43. https://doi.org/10.1038/s41438-018-0051-0
- Hok, S., Allasia, V., Andrio, E., Naessens, E., Ribes, E., Panabieres, F., Attard, A., Ris, N., Clement, M., Barlet, X., Marco, Y., Grill, E., Eichmann, R., Weis, C., Huckelhoven, R., Ammon, A., Ludwig-Muller, J., Voll, L. M. and Keller, H. 2014. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiol. 166:1506-1518. https://doi.org/10.1104/pp.114.248518
- Hyun, J.-W., Paudyal, D. P. and Hwang, R.-Y. 2015. Improved method to increase conidia production from isolates of different pathotypes of citrus scab pathogen Elsinoe spp. Res. Plant Dis. 21:231-234. https://doi.org/10.5423/RPD.2015.21.3.231
- Hyun, J.-W., Timmer, L. W., Lee, S.-C., Yun, S.-H., Ko, S.-W. and Kim, K.-S. 2001. Pathological characterization and molecular analysis of Elsinoe isolates causing scab diseases of citrus in Jeju Island in Korea. Plant Dis. 85:1013-1017. https://doi.org/10.1094/PDIS.2001.85.9.1013
- Hyun, J. W., Yi, S. H., Mackenzie, S. J., Timmer, L. W., Kim, K. S., Kang, S. K., Kwon, H. M. and Lim, H. C. 2009. Pathotypes and genetic relationship of worldwide collections of Elsinoe spp. causing scab diseases of citrus. Phytopathology 99:721-728. https://doi.org/10.1094/PHYTO-99-6-0721
- Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Mauch-Mani, B. and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8:409-414. https://doi.org/10.1016/j.pbi.2005.05.015
- Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., Rodrigues, C. M. and Machado, M. A. 2012. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7:e31263. https://doi.org/10.1371/journal.pone.0031263
- McAdam, E. L., Reid, J. B. and Foo, E. 2018. Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J. Exp. Bot. 69:2117-2130. https://doi.org/10.1093/jxb/ery046
- Oliveira, M. B., Junior, M. L., Grossi-de-Sa, M. F. and Petrofeza, S. 2015. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. J. Plant Physiol. 182:13-22. https://doi.org/10.1016/j.jplph.2015.04.006
- Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-F. F. Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068-1071. https://doi.org/10.1126/science.1173041
- Paudyal, D. P. and Hyun, J.-W. 2015. Physical changes in satsuma mandarin leaf after infection of Elsinoe fawcettii causing citrus scab disease. Plant Pathol. J. 31:421-427. https://doi.org/10.5423/PPJ.NT.05.2015.0086
- Paudyal, D. P., Hyun, J.-W. and Hwang, R.-Y. 2017. Infection and symptom development by citrus scab pathogen Elsinoe fawcettii on leaves of satsuma mandarin. Eur. J. Plant Pathol. 148:807-816. https://doi.org/10.1007/s10658-016-1136-y
- Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., Thomas, S. G., Phillips, A. L. and Hedden, P. 2008. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 53:488-504. https://doi.org/10.1111/j.1365-313X.2007.03356.x
- Shanmugam, G., Jeon, J. and Hyun, J.-W. 2020. Draft genome sequences of Elsinoe fawcettii and Elsinoe australis causing scab diseases on citrus. Mol. Plant-Microbe Interact. 33:135-137. https://doi.org/10.1094/MPMI-06-19-0169-A
- Shigenaga, A. M. and Argueso, C. T. 2016. No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 56:174-189.
- Shimizu, T., Tanizawa, Y., Mochizuki, T., Nagasaki, H., Yoshioka, T., Toyoda, A., Fujiyama, A., Kaminuma, E. and Nakamura, Y. 2017. Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front. Genet. 8:180. https://doi.org/10.3389/fgene.2017.00180
- Staswick, P. E., Tiryaki, I. and Rowe, M. L. 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405-1415. https://doi.org/10.1105/tpc.000885
- Sun, T.-P. 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6:e0103. https://doi.org/10.1199/tab.0103
- Sussmilch, F. C., Brodribb, T. J. and McAdam, S. 2017. Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J. Exp. Bot. 68:2913-2918. https://doi.org/10.1093/jxb/erx124
- Stowe, B. B. and Yamaki, T. 1957. The history and physiological action of the gibberellins. Annu. Rev. Plant Physiol. 8:181-216. https://doi.org/10.1146/annurev.pp.08.060157.001145
- Timmer, L. W., Priest, M., Broadbent, P. and Tan, M.-K. 1996. Morphological and pathological characterization of species of Elsinoe causing scab diseases of citrus. Phytopathology 86:1032-1038. https://doi.org/10.1094/Phyto-86-1032
- Ton, J., Flors, V. and Mauch-Mani, B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14:310-317. https://doi.org/10.1016/j.tplants.2009.03.006
- Ueno, Y., Yoshida, R., Kishi-Kaboshi, M., Matsushita, A., Jiang, C.-J., Goto, S., Takahashi, A., Hirochika, H. and Takatsuji, H. 2015. Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLoS Pathog. 11:e1005231. https://doi.org/10.1371/journal.ppat.1005231
- Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M. and Sharma, S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowl-edge and future prospects. Front. Plant Sci. 8:161. https://doi.org/10.3389/fpls.2017.00161
- Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frei dit Frey, N. and Leung, J. 2008. An update on abscisic acid signaling in plants and more. Mol. Plant 1:198-217. https://doi.org/10.1093/mp/ssm022
- Wu, P.-C., Chen, C.-W., Choo, C. Y. L., Chen, Y.-K., Yago, J. I. and Chung, K.-R. 2020. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen Alternaria alternata. Microbiol. Res. 241:126566. https://doi.org/10.1016/j.micres.2020.126566
- Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S. and Nakashita, H. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acidmediated abiotic stress response in Arabidopsis. Plant Cell 20:1678-1692. https://doi.org/10.1105/tpc.107.054296
- Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61:672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x