DOI QR코드

DOI QR Code

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University) ;
  • Bahmaei, Manochehr (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University) ;
  • Sharif, Amirabdolah Mehrdad (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University)
  • Received : 2020.01.08
  • Accepted : 2020.06.26
  • Published : 2021.05.28

Abstract

In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

Keywords

References

  1. Z. Liew, B. Ritz, C. Rebordosa, P.-C. Lee, J. Olsen, JAMA pediatrics, 2014, 168(4), 313-320. https://doi.org/10.1001/jamapediatrics.2013.4914
  2. J.D. Barker, D.J. de CARLE, S. Anuras, Ann. Intern. Med, 1977, 87(3), 299-301. https://doi.org/10.7326/0003-4819-87-3-299
  3. A. Zwyghuizen-Doorenbos, T.A. Roehrs, L. Lipschutz, V. Timms, T. Roth, Psychopharmacology, 1990, 100(1), 36-39. https://doi.org/10.1007/BF02245786
  4. Z.M. Khoshhesab, RSC Adv., 2015, 5(115), 95140-95148. https://doi.org/10.1039/C5RA14138A
  5. B.C. Lourencao, R.A. Medeiros, R.C. Rocha-Filho, L.H. Mazo, O. Fatibello-Filho, Talanta, 2009, 78(3), 748-752. https://doi.org/10.1016/j.talanta.2008.12.040
  6. Y. Gao, H. Wang, L. Guo, J. Electroanal. Chem., 2013, 706, 7-12. https://doi.org/10.1016/j.jelechem.2013.07.030
  7. O. Cauli, M. Morelli, Behav. Pharmacol., 2005, 16(2), 63-77. https://doi.org/10.1097/00008877-200503000-00001
  8. S. Duffy, N. Gokce, M. Holbrook, A. Huang, B. Frei, J.F. Keaney Jr, J.A. Vita, The lancet, 1999, 354(9195), 2048-2049. https://doi.org/10.1016/S0140-6736(99)04410-4
  9. N. Smirnoff, Free Radical Biol. Med., 2018, 122, 116-129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
  10. O.-W. Lau, S.-F. Luk, Y.-M., Analyst, 1989, 114(9), 1047-1051. https://doi.org/10.1039/an9891401047
  11. N.H. Phong, T.T.T. Toan, M.X. Tinh, T.N. Tuyen, T.X. Mau, D.Q. Khieu, J. Nanomater., 2018, 5348016.
  12. L. Suntornsuk, W. Gritsanapun, S. Nilkamhank, A. Paochom, J. Pharm. Biomed. Anal., 2002, 28(5), 849-855. https://doi.org/10.1016/S0731-7085(01)00661-6
  13. W. Zeng, F. Martinuzzi, A. MacGregor, J. Pharm. Biomed. Anal., 2005, 36(5), 1107-1111. https://doi.org/10.1016/j.jpba.2004.09.002
  14. M. Romeu-Nadal, S. Morera-Pons, A. Castellote, M. Lopez-Sabater, J. Chromatogr. B, 2006, 830(1), 41-46. https://doi.org/10.1016/j.jchromb.2005.10.018
  15. G. Burgot, F. Auffret, J.-L. Burgot, Anal. Chim. Acta, 1997, 343(1-2), 125-128. https://doi.org/10.1016/S0003-2670(96)00613-7
  16. R. Sandulescu, S. Mirel, R. Oprean, J. Pharm. Biomed. Anal., 2000, 23(1), 77-87. https://doi.org/10.1016/S0731-7085(00)00277-6
  17. E. McEvoy, S. Donegan, J. Power, K. Altria, J. Pharm. Biomed. Anal., 2007, 44(1), 137-143. https://doi.org/10.1016/j.jpba.2007.02.025
  18. S. Mayanna, B. Jayaram, Analyst, 1981, 106(1263), 729-732. https://doi.org/10.1039/an9810600729
  19. N. Ishler, T. Finucane, E. Borker, Anal. Chem., 1948, 20(12), 1162-1166. https://doi.org/10.1021/ac60024a010
  20. A.R. Khorrami, A. Rashidpur, Anal. Chim. Acta, 2012, 727, 20-25. https://doi.org/10.1016/j.aca.2012.03.048
  21. A. Babaei, A.R. Taheri, Sens. Actuators, B, 2013, 176, 543-551. https://doi.org/10.1016/j.snb.2012.09.021
  22. M. Hasanzadeh, N. Shadjou, E. Omidinia, J. Neurosci. Methods, 2013, 219(1), 52-60. https://doi.org/10.1016/j.jneumeth.2013.07.007
  23. H. Bagheri, A. Hajian, M. Rezaei, A. Shirzadmehr, J. Hazard. Mater., 2017, 324, 762-772. https://doi.org/10.1016/j.jhazmat.2016.11.055
  24. H. Bagheri, A. Shirzadmehr, M. Rezaei, H. Khoshsafar, Ionics, 2018, 24(3), 833-843. https://doi.org/10.1007/s11581-017-2252-1
  25. M.M. Rahman, J.-J. Lee, J. Electrochem. Sci. Technol., 2019, 10, 185-195. https://doi.org/10.5229/JECST.2019.10.2.185
  26. M.M. Rahman, X.-b. Li, Y.-D. Jeon, H.-J. Lee, S.J. Lee, J.-J. Lee, J. Electrochem. Sci. Technol., 2012, 3(2), 90-94. https://doi.org/10.5229/JECST.2012.3.2.90
  27. X.-B. Li, M.M. Rahman, G.-R. Xu, J.-J. Lee, Electrochim. Acta, 2015, 173, 440-447. https://doi.org/10.1016/j.electacta.2015.05.062
  28. J. Yu, T.H. Kim, J. Electrochem. Sci. Technol., 2017, 8(4), 274-281. https://doi.org/10.5229/JECST.2017.8.4.274
  29. K. Ghanbari, S. Bonyadi, J. Electrochem. Sci. Technol., 2020, 11(1), 68-83. https://doi.org/10.33961/jecst.2019.00472
  30. P. Viswanathan, R. Ramaraj, Sens. Actuators, B, 2018, 270, 56-63. https://doi.org/10.1016/j.snb.2018.05.007
  31. P. Viswanathan, S. Manivannan, R. Ramaraj, RSC Adv., 2015, 5(67), 54735-54741. https://doi.org/10.1039/C5RA06098B
  32. M. Sobaszek, K. Siuzdak, J. Ryl, R. Bogdanowicz, G.M. Swain, Sens. Actuators, B, 2020, 306, 127592. https://doi.org/10.1016/j.snb.2019.127592
  33. a. Gorton, Electroanalysis, 1995, 7(1), 23-45. https://doi.org/10.1002/elan.1140070104
  34. T. Alizadeh, M. Akhoundian, Electrochim. acta, 2010, 55(20), 5867-5873. https://doi.org/10.1016/j.electacta.2010.05.037
  35. X.-M. Miao, R. Yuan, Y.-Q. Chai, Y.-T. Shi, Y.-Y. Yuan, J. Electroanal. Chem., 2008, 612(2), 157-163. https://doi.org/10.1016/j.jelechem.2007.09.026
  36. A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, Sens. Actuators, B, 2008, 129(1), 246-254. https://doi.org/10.1016/j.snb.2007.08.017
  37. M.M. Rahman, J.-J. Lee, J. Electrochem. Sci. Technol, 2019, 10, 185-195. https://doi.org/10.5229/JECST.2019.10.2.185
  38. M.M. Rahman, N.S. Lopa, M.J. Ju, J.-J. Lee, J. Electroanal. Chem., 2017, 792, 54-60. https://doi.org/10.1016/j.jelechem.2017.03.038
  39. D. Liu, M.M. Rahman, C. Ge, J. Kim, J.-J. Lee, New J. Chem., 2017, 41(24), 15458-15465. https://doi.org/10.1039/C7NJ03330C
  40. P.T.K. Thu, N.D. Trinh, N.T.V. Hoan, D.X. Du, T.X. Mau, V.H. Trung, N.H. Phong, T.T.T. Toan, D.Q. Khieu, J. Mater. Sci.: Mater. Electron., 2019, 30(18), 17245-17261. https://doi.org/10.1007/s10854-019-02072-8
  41. E. Murugan, K. Kumar, Anal. Chem., 2019, 91(9), 5667-5676. https://doi.org/10.1021/acs.analchem.8b05531
  42. J. Qiao, L. Zhang, S. Gao, N. Li, Appl. Biochem. Biotechnol., 2020, 190(2), 529-539. https://doi.org/10.1007/s12010-019-03104-z
  43. A. Mulyasuryani, R.T. Tjahjanto, R.a. Andawiyah, Chemosensors, 2019, 7(4), 49. https://doi.org/10.3390/chemosensors7040049
  44. N. Tripathy, R. Ahmad, H. Kuk, D.H. Lee, Y.-B. Hahn, G. Khang, J. Photochem. Photobiol., B, 2016, 161, 312-317. https://doi.org/10.1016/j.jphotobiol.2016.06.003
  45. S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C, 2009, 113(41), 17893-17898. https://doi.org/10.1021/jp9068762
  46. P. Junploy, S. Thongtem, T. Thongtem, A. Phuruangrat, Superlattices Microstruct., 2014, 74, 173-183. https://doi.org/10.1016/j.spmi.2014.06.015
  47. M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. Girija, P.D. Pathinettam, Nanosyst.: Phys., Chem., Math., 2016, 7(4), 707-710.
  48. U. Bhat, S. Meti, Graphene as Energy Storage Material for Supercapacitors, 2020, 64, 181. https://doi.org/10.21741/9781644900550-7
  49. C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D. Leung, Renewable Sustainable Energy Rev., 2020, 120, 109656. https://doi.org/10.1016/j.rser.2019.109656
  50. B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Energy Storage Mater., 2020, 24, 22-51. https://doi.org/10.1016/j.ensm.2019.08.004
  51. L.u. Svorc, K. Cinkova, J. Sochr, M. Vojs, P. Michniak, M. Marton, J. Electroanal. Chem., 2014, 728, 86-93. https://doi.org/10.1016/j.jelechem.2014.06.038
  52. B. Liu, X. Ouyang, Y. Ding, L. Luo, D. Xu, Y. Ning, Talanta, 2016, 146, 114-121. https://doi.org/10.1016/j.talanta.2015.08.034
  53. H. Zeinali, H. Bagheri, Z. Monsef-Khoshhesab, H. Khoshsafar, A. Hajian, Mater. Sci. Eng. C, 2017, 71, 386-394. https://doi.org/10.1016/j.msec.2016.10.020
  54. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sens. Actuators, B, 2004, 102(2), 248-252. https://doi.org/10.1016/j.snb.2004.04.080
  55. L.M. Yu, X.H. Fan, J.Y. Shui, L. Cao, W. Yan, Adv. Mater. Res., 2012, 532, 70-73. https://doi.org/10.4028/www.scientific.net/AMR.532-533.70
  56. Q. Zhou, L. Yang, G. Wang, Y. Yang, Biosens. Bioelectron., 2013, 49, 25-31. https://doi.org/10.1016/j.bios.2013.04.037
  57. R.K. Thareja, S. Shukla, Appl. Surf. Sci., 2007, 253(22), 8889-8895. https://doi.org/10.1016/j.apsusc.2007.04.088
  58. M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Liq., 2017, 248, 197-204. https://doi.org/10.1016/j.molliq.2017.10.055
  59. M. Naghizadeh, M.A. Taher, A.-M. Heliyon, 2019, 5(11), e02870. https://doi.org/10.1016/j.heliyon.2019.e02870
  60. M. Krishna, S. Komarneni, Ceram. Int., 2009, 35(8), 3375-3379. https://doi.org/10.1016/j.ceramint.2009.06.010
  61. K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, V. Chabukswar, J. Macromol. Sci., Part A, 2014, 51(12), 941-947. https://doi.org/10.1080/10601325.2014.967078
  62. C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, C.C. Liu, Sens. Actuators, B, 2008, 134(2), 360-366. https://doi.org/10.1016/j.snb.2008.04.040
  63. T. Jia, J. Zhao, F. Fu, Z. Deng, W. Wang, Z. Fu, F. Meng, Int. J. Photoenergy, 2014, 197824.
  64. R. Dharmadasa, A.A. Tahir, K.G.U. Wijayantha, J. Am. Ceram. Soc., 2011, 94(10), 3540-3546. https://doi.org/10.1111/j.1551-2916.2011.04525.x
  65. M. Amare, S. Admassie, Talanta, 2012, 93, 122-128. https://doi.org/10.1016/j.talanta.2012.01.058
  66. F. Tadayon, Z. Sepehri, RSC Adv., 2015, 5(8), 65560-65568. https://doi.org/10.1039/C5RA12020A
  67. E.S. Gomes, F.R.F. Leite, B.R.L. Ferraz, H.A.J.L. Mourao, A.R. Malagutti, J. Pharm. Anal., 2019, 9(5), 347-357. https://doi.org/10.1016/j.jpha.2019.04.001
  68. H. Rao, Z. Lu, H. Ge, X. Liu, B. Chen, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Microchim. Acta, 2017, 184(1), 261-269. https://doi.org/10.1007/s00604-016-1998-x
  69. A. Motaharian, F. Motaharian, K. Abnous, M.R.M. Hosseini, M. Hassanzadeh-Khayyat, Anal. Bioanal. Chem., 2016, 408(24), 6769-6779. https://doi.org/10.1007/s00216-016-9802-7
  70. B. Rezaei, S. Foroughi-Dehnavi, A.A. Ensafi, Ionics, 2015, 21(10), 2969-2980. https://doi.org/10.1007/s11581-015-1458-3
  71. F.A. Harraz, M. Faisal, A.E. Al-Salami, A.M. El-Toni, A.A. Almadiy, S.A. Al-Sayari, M.S. Al-Assiri, Mater. Lett., 2019, 234, 96-100. https://doi.org/10.1016/j.matlet.2018.09.076
  72. S. Chitravathi, N. Munichandraiah, J. Electroanal. Chem., 2016, 764, 93-103. https://doi.org/10.1016/j.jelechem.2016.01.021
  73. P.R. Dalmasso, M.L. Pedano, G.A. Rivas, Sens. Actuators, B, 2012, 173, 732-736. https://doi.org/10.1016/j.snb.2012.07.087
  74. D.M. Fernandes, N. Silva, C. Pereira, C. Moura, J.M.C.S. Magalhaes, B. Bachiller-Baeza, I. RodriguezRamos, A. Guerrero-Ruiz, C. Delerue-Matos, C. Freire, Sens. Actuators, B, 2015, 218, 128-136. https://doi.org/10.1016/j.snb.2015.05.003
  75. V.K. Gupta, A.K. Jain, S.K. Shoora, Electrochim. Acta, 2013, 93, 248-253. https://doi.org/10.1016/j.electacta.2013.01.065
  76. B. Habibi, M. Jahanbakhshi, M.H. Pournaghi-Azar, Anal. Biochem., 2011, 411, 167-175. https://doi.org/10.1016/j.ab.2011.01.005
  77. B.J. Sanghavi, A.K. Srivastava, Electrochim. Acta, 2010, 55(28), 8638-8648. https://doi.org/10.1016/j.electacta.2010.07.093
  78. M. Tefera, A. Geto, M. Tessema, S. Admassie, Food Chem., 2016, 210, 156-162. https://doi.org/10.1016/j.foodchem.2016.04.106
  79. Y. Wang, T. Wu, C.-y. Bi, Microchim. Acta, 2016, 183(2), 731-739. https://doi.org/10.1007/s00604-015-1688-0