DOI QR코드

DOI QR Code

An in-silico approach to design potential siRNAs against the ORF57 of Kaposi's sarcoma-associated herpesvirus

  • Rahman, Anisur (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University) ;
  • Gupta, Shipan Das (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University) ;
  • Rahman, Md. Anisur (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University) ;
  • Tamanna, Saheda (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University)
  • Received : 2021.09.17
  • Accepted : 2021.12.09
  • Published : 2021.12.31

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few human oncogenic viruses, which causes a variety of malignancies, including Kaposi's sarcoma, multicentric Castleman disease, and primary effusion lymphoma, particularly in human immunodeficiency virus patients. The currently available treatment options cannot always prevent the invasion and dissemination of this virus. In recent times, siRNA-based therapeutics are gaining prominence over conventional medications as siRNA can be designed to target almost any gene of interest. The ORF57 is a crucial regulatory protein for lytic gene expression of KSHV. Disruption of this gene translation will inevitably inhibit the replication of the virus in the host cell. Therefore, the ORF57 of KSHV could be a potential target for designing siRNA-based therapeutics. Considering both sequence preferences and target site accessibility, several online tools (i-SCORE Designer, Sfold web server) had been utilized to predict the siRNA guide strand against the ORF57. Subsequently, off-target filtration (BLAST), conservancy test (fuzznuc), and thermodynamics analysis (RNAcofold, RNAalifold, and RNA Structure web server) were also performed to select the most suitable siRNA sequences. Finally, two siRNAs were identified that passed all of the filtration phases and fulfilled the thermodynamic criteria. We hope that the siRNAs predicted in this study would be helpful for the development of new effective therapeutics against KSHV.

Keywords

References

  1. Kagu MB, Nggada HA, Garandawa HI, Askira BH, Durosinmi MA. AIDS-associated Kaposi's sarcoma in Northeastern Nigeria. Singapore Med J 2006;47:1069-1074.
  2. Tamburro KM, Yang D, Poisson J, Fedoriw Y, Roy D, Lucas A, et al. Vironome of Kaposi sarcoma associated herpesvirus-inflammatory cytokine syndrome in an AIDS patient reveals co-infection of human herpesvirus 8 and human herpesvirus 6A. Virology 2012;433:220-225. https://doi.org/10.1016/j.virol.2012.08.014
  3. Giffin L, Damania B. KSHV: pathways to tumorigenesis and persistent infection. Adv Virus Res 2014;88:111-159. https://doi.org/10.1016/B978-0-12-800098-4.00002-7
  4. Goncalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS 2017;31:1903-1916. https://doi.org/10.1097/QAD.0000000000001567
  5. Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and those without HIV infection. N Engl J Med 1995;332:1181-1185. https://doi.org/10.1056/NEJM199505043321801
  6. Gao SJ, Kingsley L, Li M, Zheng W, Parravicini C, Ziegler J, et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat Med 1996;2:925-928. https://doi.org/10.1038/nm0896-925
  7. Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Primers 2019;5:9. https://doi.org/10.1038/s41572-019-0060-9
  8. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995;332:1186-1191. https://doi.org/10.1056/NEJM199505043321802
  9. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 1995;86:1276-1280. https://doi.org/10.1182/blood.v86.4.1276.bloodjournal8641276
  10. Uldrick TS, Wang V, O'Mahony D, Aleman K, Wyvill KM, Marshall V, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. Clin Infect Dis 2010;51:350-358. https://doi.org/10.1086/654798
  11. Beral V, Peterman TA, Berkelman RL, Jaffe HW. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 1990;335:123-128. https://doi.org/10.1016/0140-6736(90)90001-L
  12. Roshan R, Labo N, Trivett M, Miley W, Marshall V, Coren L, et al. T-cell responses to KSHV infection: a systematic approach. Oncotarget 2017;8:109402-109416. https://doi.org/10.18632/oncotarget.22683
  13. Agaba PA, Sule HM, Ojoh RO, Hassan Z, Apena L, Mu'azu MA, et al. Presentation and survival of patients with AIDS-related Kaposi's sarcoma in Jos, Nigeria. Int J STD AIDS 2009;20:410-413. https://doi.org/10.1258/ijsa.2008.008353
  14. Wabinga HR, Parkin DM, Wabwire-Mangen F, Mugerwa JW. Cancer in Kampala, Uganda, in 1989-91: changes in incidence in the era of AIDS. Int J Cancer 1993;54:26-36. https://doi.org/10.1002/ijc.2910540106
  15. Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R, Wabinga H. Part I: Cancer in Indigenous Africans: burden, distribution, and trends. Lancet Oncol 2008;9:683-692. https://doi.org/10.1016/S1470-2045(08)70175-X
  16. Renne R, Lagunoff M, Zhong W, Ganem D. The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 1996;70:8151-8154. https://doi.org/10.1128/jvi.70.11.8151-8154.1996
  17. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996;93:14862-14867. https://doi.org/10.1073/pnas.93.25.14862
  18. Neipel F, Albrecht JC, Fleckenstein B. Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 1997;71:4187-4192. https://doi.org/10.1128/jvi.71.6.4187-4192.1997
  19. Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, et al. Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 2000;74:6207-6212. https://doi.org/10.1128/JVI.74.13.6207-6212.2000
  20. Majerciak V, Zheng ZM. KSHV ORF57, a protein of many faces. Viruses 2015;7:604-633. https://doi.org/10.3390/v7020604
  21. Nekorchuk M, Han Z, Hsieh TT, Swaminathan S. Kaposi's sarcoma-associated herpesvirus ORF57 protein enhances mRNA accumulation independently of effects on nuclear RNA export. J Virol 2007;81:9990-9998. https://doi.org/10.1128/JVI.00896-07
  22. Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 2007;81:1062-1071. https://doi.org/10.1128/JVI.01558-06
  23. Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015;4:e252. https://doi.org/10.1038/mtna.2015.23
  24. Leconet W, Petit P, Peraldi-Roux S, Bresson D. Nonviral delivery of small interfering RNA into pancreas-associated immune cells prevents autoimmune diabetes. Mol Ther 2012;20:2315-2325. https://doi.org/10.1038/mt.2012.190
  25. Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic potency of nanoformulations of siRNAs and shRNAs in animal models of cancers. Pharmaceutics 2018;10:65. https://doi.org/10.3390/pharmaceutics10020065
  26. Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018;28:e1976. https://doi.org/10.1002/rmv.1976
  27. Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol 2019;37:884-894. https://doi.org/10.1038/s41587-019-0205-0
  28. Mehta A, Michler T, Merkel OM. siRNA Therapeutics against respiratory viral infections-what have we learned for potential COVID-19 therapies? Adv Healthc Mater 2021;10:e2001650.
  29. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res 2020;48:D84-D86.
  30. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000;7:203-214. https://doi.org/10.1089/10665270050081478
  31. Okonechnikov K, Golosova O, Fursov M, team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012;28:1166-1167. https://doi.org/10.1093/bioinformatics/bts091
  32. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-1797. https://doi.org/10.1093/nar/gkh340
  33. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189-1191. https://doi.org/10.1093/bioinformatics/btp033
  34. Tafer H. Bioinformatics of siRNA design. (Gorodkin J, Ruzzo WL, eds.). In: RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods Totowa: Humana Press, 2014. pp. 477-490.
  35. Ichihara M, Murakumo Y, Masuda A, Matsuura T, Asai N, Jijiwa M, et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res 2007;35:e123. https://doi.org/10.1093/nar/gkm699
  36. Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 2001;29:1034-1046. https://doi.org/10.1093/nar/29.5.1034
  37. Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004;32:W135-W141. https://doi.org/10.1093/nar/gkh449
  38. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326-330. https://doi.org/10.1038/nbt936
  39. Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004;316: 1050-1058. https://doi.org/10.1016/j.bbrc.2004.02.157
  40. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32:936-948. https://doi.org/10.1093/nar/gkh247
  41. Matveeva O. What parameters to consider and which software tools to use for target selection and molecular design of small interfering RNAs. (Taxman DJ, ed.). In: siRNA Design: Methods and Protocols Totowa: Humana Press, 2013. pp. 1-16.
  42. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000;16:276-277. https://doi.org/10.1016/S0168-9525(00)02024-2
  43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  44. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007;35:D61-D65. https://doi.org/10.1093/nar/gkl842
  45. Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2007;2:2068-2078. https://doi.org/10.1038/nprot.2007.278
  46. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68-D73. https://doi.org/10.1093/nar/gkt1181
  47. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res 2008;36:W70-W74. https://doi.org/10.1093/nar/gkn188
  48. Bernhart SH, Tafer H, Muckstein U, Flamm C, Stadler PF, Hofacker IL. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 2006;1:3. https://doi.org/10.1186/1748-7188-1-3
  49. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010;11:129. https://doi.org/10.1186/1471-2105-11-129
  50. Zuber J, Mathews DH. Estimating uncertainty in predicted folding free energy changes of RNA secondary structures. RNA 2019;25:747-754. https://doi.org/10.1261/rna.069203.118
  51. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 2008;9:474. https://doi.org/10.1186/1471-2105-9-474
  52. Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 2015;31:3377-3379. https://doi.org/10.1093/bioinformatics/btv372
  53. Ashraf MI, Leema AA. Identification of micro-RNA seed sequences and other possible conserved motifs: an information theoretic approach. J RNAi Gene Silencing 2017;13:570-572.
  54. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002;16:2497-2508. https://doi.org/10.1101/gad.1022002
  55. Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 2016;23:73-82. https://doi.org/10.1038/cgt.2016.4
  56. Ui-Tei K, Nishi K, Takahashi T, Nagasawa T. Thermodynamic control of small RNA-mediated gene silencing. Front Genet 2012;3:101. https://doi.org/10.3389/fgene.2012.00101
  57. Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 2008;36:7100-7109. https://doi.org/10.1093/nar/gkn902
  58. Shatizadeh Malekshahi S, Arefian E, Salimi V, Mokhtari Azad T, Yavarian J. Potential siRNA molecules for nucleoprotein and M2/L overlapping region of respiratory syncytial virus: in silico design. Jundishapur J Microbiol 2016;9:e34304. https://doi.org/10.5812/jjm.34304
  59. Matveeva OV, Kang Y, Spiridonov AN, Saetrom P, Nemtsov VA, Ogurtsov AY, et al. Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS One 2010;5:e10180. https://doi.org/10.1371/journal.pone.0010180
  60. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009;10:392. https://doi.org/10.1186/1471-2105-10-392
  61. ElHefnawi M, Kim T, Kamar MA, Min S, Hassan NM, El-Ahwany E, et al. In silico design and experimental validation of siRNAs targeting conserved regions of multiple hepatitis C virus genotypes. PLoS One 2016;11:e0159211. https://doi.org/10.1371/journal.pone.0159211
  62. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-270. https://doi.org/10.1038/nm1191
  63. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23: 457-462. https://doi.org/10.1038/nbt1081
  64. Sugiyama T, Gursel M, Takeshita F, Coban C, Conover J, Kaisho T, et al. CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J Immunol 2005;174:2273-2279. https://doi.org/10.4049/jimmunol.174.4.2273
  65. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, et al. Off-target effects by siRNA can induce toxic phenotype. RNA 2006;12:1188-1196. https://doi.org/10.1261/rna.28106
  66. Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019;24:69. https://doi.org/10.1186/s11658-019-0196-3
  67. Aleman LM, Doench J, Sharp PA. Comparison of siRNA-induced off-target RNA and protein effects. RNA 2007;13:385-395. https://doi.org/10.1261/rna.352507
  68. Heale BS, Soifer HS, Bowers C, Rossi JJ. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 2005;33:e30. https://doi.org/10.1093/nar/gni026
  69. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, et al. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 2008;36:2136-2151. https://doi.org/10.1093/nar/gkn042
  70. Vidarsdottir L, Goroshchuk O, Kolosenko I, Palm-Apergi C. Designing siRNA and evaluating its effect on RNA targets using qPCR and western blot. In: Oligonucleotide-Based Therapies: Methods and Protocols (Gissberg O, Zain R, Lundin KE, eds.). New York: Springer, 2019. pp. 59-72.
  71. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406-3415. https://doi.org/10.1093/nar/gkg595
  72. Lu ZJ, Mathews DH. Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 2008;36:640-647. https://doi.org/10.1093/nar/gkm920
  73. Singh S, Gupta SK, Nischal A, Khattri S, Nath R, Pant KK, et al. Design of potential siRNA molecules for hepatitis delta virus gene silencing. Bioinformation 2012;8:749-757. https://doi.org/10.6026/97320630008749
  74. Patzel V. In silico selection of active siRNA. Drug Discov Today 2007;12:139-148. https://doi.org/10.1016/j.drudis.2006.11.015
  75. Gredell JA, Berger AK, Walton SP. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng 2008;100:744-755. https://doi.org/10.1002/bit.21798
  76. Yuan F, Gao ZQ, Majerciak V, Bai L, Hu ML, Lin XX, et al. The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathog 2018;14:e1007232. https://doi.org/10.1371/journal.ppat.1007232
  77. Majerciak V, Yamanegi K, Nie SH, Zheng ZM. Structural and functional analyses of Kaposi sarcoma-associated herpesvirus ORF57 nuclear localization signals in living cells. J Biol Chem 2006;281:28365-28378. https://doi.org/10.1074/jbc.M603095200
  78. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004;117:69-81. https://doi.org/10.1016/S0092-8674(04)00261-2
  79. Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005;19:517-529. https://doi.org/10.1101/gad.1284105
  80. Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 2005;11:459-469. https://doi.org/10.1261/rna.7231505
  81. Fatahzadeh M. Kaposi sarcoma: review and medical management update. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:2-16. https://doi.org/10.1016/j.tripleo.2011.05.011
  82. Veraitch O, Bower M, Shackleton D, Stebbing J. Rituximab therapy for HIV-associated multicentric Castleman disease. HIV Ther 2010;4:281-284. https://doi.org/10.2217/hiv.10.17
  83. Poole CL, James SH. Antiviral therapies for herpesviruses: current agents and new directions. Clin Ther 2018;40:1282-1298. https://doi.org/10.1016/j.clinthera.2018.07.006
  84. Steinberg I, Kimberlin DW. Acyclovir dosing and acute kidney injury: deviations and direction. J Pediatr 2015;166:1341-1344. https://doi.org/10.1016/j.jpeds.2015.03.053
  85. Wang K, Yang C, Ye J, Zeng F, Duan Y, Zheng Y, et al. Inhibition activity of herpes virus (HSV) replication by α-TIF siRNA-loaded PLGA-TPGS nanoparticles in vitro and in vivo. J Biomed Nanotechnol 2017;13:717-726. https://doi.org/10.1166/jbn.2017.2378
  86. Gatault P, Jones IKA, Meyer C, Kreklywich C, Alexander T, Smith PP, et al. Rat and human cytomegalovirus ORF116 encodes a virion envelope glycoprotein required for infectivity. Virology 2021;557:23-33. https://doi.org/10.1016/j.virol.2020.12.014
  87. Lu JF, Jin TC, Zhou T, Lu XJ, Chen JP, Chen J. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Cyprinid Herpesvirus 2. Dev Comp Immunol 2021;116:103930. https://doi.org/10.1016/j.dci.2020.103930