Acknowledgement
We thank all of our patients and their families for participating in this study. This work was supported by a grant from the Ministry of Health & Welfare of the Republic of Korea (HI15C1575) and a grant from the Korea Center for Disease Control and Prevention (2016-ER7401-00).
References
- Burns JC, Glode MP. Kawasaki syndrome. Lancet 2004;364:533-544. https://doi.org/10.1016/S0140-6736(04)16814-1
- Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease: a 10- to 21-year follow-up study of 594 patients. Circulation 1996;94:1379-1385. https://doi.org/10.1161/01.CIR.94.6.1379
- Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, Duffy CE, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 1986;315:341-347. https://doi.org/10.1056/NEJM198608073150601
- Durongpisitkul K, Gururaj VJ, Park JM, Martin CF. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics 1995;96:1057-1061. https://doi.org/10.1542/peds.96.6.1057
- Newburger JW, Fulton DR. Kawasaki disease. Curr Opin Pediatr 2004;16:508-514. https://doi.org/10.1097/01.mop.0000137796.23813.64
- Lee KY, Han JW, Lee JS. Kawasaki disease may be a hyperimmune reaction of genetically susceptible children to variants of normal environmental flora. Med Hypotheses 2007;69:642-651. https://doi.org/10.1016/j.mehy.2006.12.051
- Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, Wright VJ, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 2011;43:1241-1246. https://doi.org/10.1038/ng.981
- Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, Chen MR, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 2012;44:522-525. https://doi.org/10.1038/ng.2227
- Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 2012;44:517-521. https://doi.org/10.1038/ng.2220
- Kim JJ, Yun SW, Yu JJ, Yoon KL, Lee KY, Kil HR, et al. A genome-wide association analysis identifies NMNAT2 and HCP5 as susceptibility loci for Kawasaki disease. J Hum Genet 2017;62:1023-1029. https://doi.org/10.1038/jhg.2017.87
- Kwon YC, Kim JJ, Yun SW, Yu JJ, Yoon KL, Lee KY, et al. BCL2L11 is associated with Kawasaki disease in intravenous immunoglobulin responder patients. Circ Genom Precis Med 2018;11:e002020. https://doi.org/10.1161/CIRCGEN.117.002020
- Onouchi Y. The genetics of Kawasaki disease. Int J Rheum Dis 2018;21:26-30. https://doi.org/10.1111/1756-185X.13218
- Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2004;110:2747-2771. https://doi.org/10.1161/01.CIR.0000145143.19711.78
- McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927-e999. https://doi.org/10.1161/CIR.0000000000000484
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
- Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6:80-92. https://doi.org/10.4161/fly.19695
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-575. https://doi.org/10.1086/519795
- Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 2017;8:14357. https://doi.org/10.1038/ncomms14357
- Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, et al. The polygenic and monogenic basis of blood traits and diseases. Cell 2020;182:1214-1231. https://doi.org/10.1016/j.cell.2020.08.008
- Lee T, Furukawa S, Fukuda Y, Yabuta K, Kato H. Plasma prostaglandin E2 level in Kawasaki disease. Prostaglandins Leukot Essent Fatty Acids 1988;31:53-57. https://doi.org/10.1016/0952-3278(88)90076-2
- Kajimoto M, Ichiyama T, Ueno Y, Shiraishi M, Hasegawa M, Furukawa S. Enhancement of activated beta1-integrin expression by prostaglandin E2 via EP receptors in isolated human coronary arterial endothelial cells: implication for the treatment of Kawasaki disease. Inflamm Res 2009;58:224-228. https://doi.org/10.1007/s00011-008-8138-y
- Sasai K. Plasma PGE2, TXB2 and 6-keto PGF1 alpha levels in patients with Kawasaki disease. Arerugi 1988;37:952-958.
- Kuo HC, Wang CL, Yang KD, Lo MH, Hsieh KS, Li SC, et al. Plasma prostaglandin E2 levels correlated with the prevention of intravenous immunoglobulin resistance and coronary artery lesions formation via CD40L in Kawasaki disease. PLoS One 2016;11:e0161265. https://doi.org/10.1371/journal.pone.0161265
- Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med 2012;209:2247-2261. https://doi.org/10.1084/jem.20120831
- Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol 2013;131:477-485. https://doi.org/10.1016/j.jaci.2012.11.050
- International Multiple Sclerosis Genetics Consortium; Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45:1353-1360. https://doi.org/10.1038/ng.2770
- Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 2019;104:65-75. https://doi.org/10.1016/j.ajhg.2018.11.008
- Yamazaki-Nakashimada MA, Gamez-Gonzalez LB, Murata C, Honda T, Yasukawa K, Hamada H. IgG levels in Kawasaki disease and its association with clinical outcomes. Clin Rheumatol 2019;38:749-754. https://doi.org/10.1007/s10067-018-4339-0
- Lindquist ME, Hicar MD. B cells and antibodies in Kawasaki disease. Int J Mol Sci 2019;20:1834. https://doi.org/10.3390/ijms20081834
- Kim JJ, Park YM, Yoon D, Lee KY, Seob Song M, Doo Lee H, et al. Identification of KCNN2 as a susceptibility locus for coronary artery aneurysms in Kawasaki disease using genome-wide association analysis. J Hum Genet 2013;58:521-525. https://doi.org/10.1038/jhg.2013.43
- Kuo HC, Li SC, Guo MM, Huang YH, Yu HR, Huang FC, et al. Genome-wide association study identifies novel susceptibility genes associated with coronary artery aneurysm formation in Kawasaki disease. PLoS One 2016;11:e0154943. https://doi.org/10.1371/journal.pone.0154943
- Lin YJ, Chang JS, Liu X, Tsang H, Chien WK, Chen JH, et al. Genetic variants in PLCB4/PLCB1 as susceptibility loci for coronary artery aneurysm formation in Kawasaki disease in Han Chinese in Taiwan. Sci Rep 2015;5:14762. https://doi.org/10.1038/srep14762
- Kwon YC, Kim JJ, Yu JJ, Yun SW, Yoon KL, Lee KY, et al. Identification of the TIFAB gene as a susceptibility locus for coronary artery aneurysm in patients with Kawasaki disease. Pediatr Cardiol 2019;40:483-488. https://doi.org/10.1007/s00246-018-1992-7
- Hoggart C, Shimizu C, Galassini R, Wright VJ, Shailes H, Bellos E, et al. Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease. Eur J Hum Genet 2021;29:1734-1744. https://doi.org/10.1038/s41431-021-00838-5
- Hopps E, Caimi G. Matrix metalloproteases as a pharmacological target in cardiovascular diseases. Eur Rev Med Pharmacol Sci 2015;19:2583-2589.
- Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasaki disease: role of matrix metalloproteinases. Arch Dis Child 2006;91:847-851. https://doi.org/10.1136/adc.2005.087437
- Kuo HC, Li SC, Huang LH, Huang YH. Epigenetic hypomethylation and upregulation of matrix metalloproteinase 9 in Kawasaki disease. Oncotarget 2017;8:60875-60891. https://doi.org/10.18632/oncotarget.19650
- Fury W, Tremoulet AH, Watson VE, Best BM, Shimizu C, Hamilton J, et al. Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum Immunol 2010;71:865-873. https://doi.org/10.1016/j.humimm.2010.06.008
- Pan Y, Fan Q. Identification of potential core genes in immunoglobulin-resistant Kawasaki disease using bioinformatics analysis. Crit Rev Eukaryot Gene Expr 2020;30:85-91. https://doi.org/10.1615/critreveukaryotgeneexpr.2020028702