References
- M. Baronti and P. Papini, Convergence of sequences of sets, Methods of Functional Analysis in Approximation Theory 76 (1986), 133-155.
- G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421-432. https://doi.org/10.1017/S0004972700009370
- G. Beer, Wijsman convergence:A survey, Set-Valued Var. Anal. 2 (1994), 77-94. https://doi.org/10.1007/BF01027094
- S. Bhunia, P. Das and S.K. Pal, Restricting statistical convergence, Acta Math. Hungar. 134 (2012), 153-161. https://doi.org/10.1007/s10474-011-0122-2
- J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63. https://doi.org/10.1524/anly.1988.8.12.47
- H. Cakalli and E. Savas, Statistical convergence of double sequences in topological groups, J. Comput. Anal. Appl. 12 (2010), 421-426.
- R. Colak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications 1 (2010), 121-129.
- R. Colak, C.A. Bektas, λ-statistical convergence of order α, Acta Math. Sci. Ser. B 31 (2011), 953-959. https://doi.org/10.1016/S0252-9602(11)60288-9
- R. Colak and Y. Altin, Statistical convergence of double sequences of order α, J. Funct. Spaces Appl. 2013 (2013), 1-5.
-
E. Dundar and B. Altay, Multipliers for bounded
$\mathcal{I}_2$ -convergent of double sequences, Math. Comput. Modelling 55 (2012), 1193-1198. https://doi.org/10.1016/j.mcm.2011.09.043 - E. Dundar and N. Pancaroglu Akin, Wijsman regularly ideal convergence of double sequences of sets, J. Intell. Fuzzy Systems 37 (2019), 8159-8166, https://doi.org/10.3233/JIFS-190626
- M. Et and H. Sengul, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), 1593-1602. https://doi.org/10.2298/FIL1408593E
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978), 508-520.
- J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
- J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-52. https://doi.org/10.2140/pjm.1993.160.43
- A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2001), 129-138. https://doi.org/10.1216/rmjm/1030539612
- F. Moricz, Statistical convergence of multiple sequences, Arch. Math. 81 (2003), 82-89. https://doi.org/10.1007/s00013-003-0506-9
- M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
- M. Mursaleen, C. Cakan, S.A. Mohiuddine and E. Savas, Generalized statistical convergence and statistical core of double sequences, Acta Math. Sin. 26 (2010), 2131-2144. https://doi.org/10.1007/s10114-010-9050-2
- F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87-99.
- F. Nuray, U. Ulusu and E. Dundar, Cesaro summability of double sequences of sets, Gen. Math. Notes 25 (2014), 8-18.
- F. Nuray, U. Ulusu and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Comput. 20 (2016), 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
- F. Nuray, E. Dundar and U. Ulusu, Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform. 16 (2021), 55-64.
- R.F. Patterson and E. Savas, Lacunary statistical convergence of double sequences, Math. Commun. 10 (2005), 55-61.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321. https://doi.org/10.1007/BF01448977
- E. Savas, Some sequence spaces and statistical convergence, Int. J. Math. Math. Sci. 29 (2002), 303-306. https://doi.org/10.1155/S0161171202003071
- E. Savas and R.F. Patterson, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett. 19 (2006), 527-534. https://doi.org/10.1016/j.aml.2005.06.018
- E. Savas, Double almost statistical convergence of order α, Adv. Difference Equ. 2013 (2013), 1-9. https://doi.org/10.1186/1687-1847-2013-1
- E. Savas, Double almost lacunary statistical convergence of order α, Adv. Difference Equ. 2013 (2013), 1-10. https://doi.org/10.1186/1687-1847-2013-1
-
E. Savas, On
$\mathcal{I}$ -lacunary statistical convergence of order α for sequences of sets, Filomat 29 (2015), 1223-1229. https://doi.org/10.2298/FIL1506223S - I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. https://doi.org/10.2307/2308747
- Y. Sever, O. Talo and B. Altay, On convergence of double sequences of closed sets, Contemporary Analysis and Applied Mathematics 3 (2015), 30-49.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. https://doi.org/10.4064/cm-2-2-98-108
- T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- H. Sengul and M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B 34 (2014), 473-482. https://doi.org/10.1016/S0252-9602(14)60021-7
-
H. Sengul and M. Et, On
$\mathcal{I}$ -lacunary statistical convergence of order α of sequences of sets, Filomat 31 (2017), 2403-2412. https://doi.org/10.2298/FIL1708403S - O. Talo, Y. Sever and F. Basar, On statistically convergent sequences of closed sets, Filomat 30 (2016), 1497-1509. https://doi.org/10.2298/FIL1606497T
-
S. Tortop and E. Dundar, Wijsman
$\mathcal{I}_2$ -invariant convergence of double sequences of sets, Journal of Inequalities and Special Functions 9 (2018), 90-100. - B.C. Tripathy, On statistical convergence, Proc. Est. Acad. Sci. 47 (1998), 299-303.
- U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress in Applied Mathematics 4 (2012), 99-109.
- U. Ulusu and E. Gulle, Some statistical convergence types for double set sequences of order α, Facta Universitatis Ser. Math. Inform. 35 (2020), 595-603. https://doi.org/10.22190/FUMI2003595U
- R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7