DOI QR코드

DOI QR Code

MHC Multimer: A Molecular Toolbox for Immunologists

  • Chang, Jun (Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2021.03.04
  • Accepted : 2021.03.25
  • Published : 2021.05.31

Abstract

The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.

Keywords

Acknowledgement

This study was supported by a grant of Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (grant No. HV20C0049 and HV20C0156).

References

  1. Altman, J.D. and Davis, M.M. (2003). MHC-peptide tetramers to visualize antigen-specific T cells. Curr. Protoc. Immunol. 53, 17.3.1-17.3.33.
  2. Altman, J.D., Moss, P.A., Goulder, P.J., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J., and Davis, M.M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94-96. https://doi.org/10.1126/science.274.5284.94
  3. Bandura, D.R., Baranov, V.I., Ornatsky, O.I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J.E., and Tanner, S.D. (2009). Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813-6822. https://doi.org/10.1021/ac901049w
  4. Bendall, S.C., Simonds, E.F., Qiu, P., Amir el, A.D., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al. (2011). Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696. https://doi.org/10.1126/science.1198704
  5. Bentzen, A.K., Marquard, A.M., Lyngaa, R., Saini, S.K., Ramskov, S., Donia, M., Such, L., Furness, A.J., McGranahan, N., Rosenthal, R., et al. (2016). Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037-1045. https://doi.org/10.1038/nbt.3662
  6. Cebecauer, M., Guillaume, P., Mark, S., Michielin, O., Boucheron, N., Bezard, M., Meyer, B.H., Segura, J.M., Vogel, H., and Luescher, I.F. (2005). CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J. Biol. Chem. 280, 23820-23828. https://doi.org/10.1074/jbc.M500654200
  7. Clement, M., Ladell, K., Ekeruche-Makinde, J., Miles, J.J., Edwards, E.S., Dolton, G., Williams, T., Schauenburg, A.J., Cole, D.K., Lauder, S.N., et al. (2011). Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J. Immunol. 187, 654-663. https://doi.org/10.4049/jimmunol.1003941
  8. Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C., Crawley, C., et al. (2005). Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202, 379-386. https://doi.org/10.1084/jem.20040613
  9. Crowley, M.P., Fahrer, A.M., Baumgarth, N., Hampl, J., Gutgemann, I., Teyton, L., and Chien, Y. (2000). A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule. Science 287, 314-316. https://doi.org/10.1126/science.287.5451.314
  10. Curtsinger, J., Deeths, M.J., Pease, P., and Mescher, M.F. (1997). Artificial cell surface constructs for studying receptor-ligand contributions to lymphocyte activation. J. Immunol. Methods 209, 47-57. https://doi.org/10.1016/S0022-1759(97)00146-4
  11. Davis, M.M., Altman, J.D., and Newell, E.W. (2011). Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nat. Rev. Immunol. 11, 551-558. https://doi.org/10.1038/nri3020
  12. Day, C.L., Seth, N.P., Lucas, M., Appel, H., Gauthier, L., Lauer, G.M., Robbins, G.K., Szczepiorkowski, Z.M., Casson, D.R., Chung, R.T., et al. (2003). Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112, 831-842. https://doi.org/10.1172/JCI200318509
  13. Dolton, G., Tungatt, K., Lloyd, A., Bianchi, V., Theaker, S.M., Trimby, A., Holland, C.J., Donia, M., Godkin, A.J., Cole, D.K., et al. (2015). More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 146, 11-22. https://doi.org/10.1111/imm.12499
  14. Fehlings, M., Simoni, Y., Penny, H.L., Becht, E., Loh, C.Y., Gubin, M.M., Ward, J.P., Wong, S.C., Schreiber, R.D., and Newell, E.W. (2017). Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8(+) T cells. Nat. Commun. 8, 562. https://doi.org/10.1038/s41467-017-00627-z
  15. Frosig, T.M., Yap, J., Seremet, T., Lyngaa, R., Svane, I.M., Thor Straten, P., Heemskerk, M.H., Grotenbreg, G.M., and Hadrup, S.R. (2015). Design and validation of conditional ligands for HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, and HLA-B*44:05. Cytometry A 87, 967-975. https://doi.org/10.1002/cyto.a.22689
  16. Garboczi, D.N., Hung, D.T., and Wiley, D.C. (1992). HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. U. S. A. 89, 3429-3433. https://doi.org/10.1073/pnas.89.8.3429
  17. Greten, T.F., Slansky, J.E., Kubota, R., Soldan, S.S., Jaffee, E.M., Leist, T.P., Pardoll, D.M., Jacobson, S., and Schneck, J.P. (1998). Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19- specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc. Natl. Acad. Sci. U. S. A. 95, 7568-7573. https://doi.org/10.1073/pnas.95.13.7568
  18. Hadrup, S.R., Bakker, A.H., Shu, C.J., Andersen, R.S., van Veluw, J., Hombrink, P., Castermans, E., Thor Straten, P., Blank, C., Haanen, J.B., et al. (2009). Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520-526. https://doi.org/10.1038/nmeth.1345
  19. Hess, P.R., Barnes, C., Woolard, M.D., Johnson, M.D., Cullen, J.M., Collins, E.J., and Frelinger, J.A. (2007). Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin. Blood 109, 3300-3307. https://doi.org/10.1182/blood-2006-06-028001
  20. Hirsch, J.D., Eslamizar, L., Filanoski, B.J., Malekzadeh, N., Haugland, R.P., Beechem, J.M., and Haugland, R.P. (2002). Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308, 343-357. https://doi.org/10.1016/S0003-2697(02)00201-4
  21. Huppa, J.B., Axmann, M., Mortelmaier, M.A., Lillemeier, B.F., Newell, E.W., Brameshuber, M., Klein, L.O., Schutz, G.J., and Davis, M.M. (2010). TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963-967. https://doi.org/10.1038/nature08746
  22. Knabel, M., Franz, T.J., Schiemann, M., Wulf, A., Villmow, B., Schmidt, B., Bernhard, H., Wagner, H., and Busch, D.H. (2002). Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med. 8, 631-637. https://doi.org/10.1038/nm0602-631
  23. Kozono, H., White, J., Clements, J., Marrack, P., and Kappler, J. (1994). Production of soluble MHC class II proteins with covalently bound single peptides. Nature 369, 151-154. https://doi.org/10.1038/369151a0
  24. Leisner, C., Loeth, N., Lamberth, K., Justesen, S., Sylvester-Hvid, C., Schmidt, E.G., Claesson, M., Buus, S., and Stryhn, A. (2008). One-pot, mix-and-read peptide-MHC tetramers. PLoS One 3, e1678. https://doi.org/10.1371/journal.pone.0001678
  25. Lissina, A., Ladell, K., Skowera, A., Clement, M., Edwards, E., Seggewiss, R., van den Berg, H.A., Gostick, E., Gallagher, K., Jones, E., et al. (2009). Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 340, 11-24. https://doi.org/10.1016/j.jim.2008.09.014
  26. Luimstra, J.J., Garstka, M.A., Roex, M.C.J., Redeker, A., Janssen, G.M.C., van Veelen, P.A., Arens, R., Falkenburg, J.H.F., Neefjes, J., and Ovaa, H. (2018). A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med. 215, 1493-1504. https://doi.org/10.1084/jem.20180156
  27. Maile, R., Wang, B., Schooler, W., Meyer, A., Collins, E.J., and Frelinger, J.A. (2001). Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers. J. Immunol. 167, 3708-3714. https://doi.org/10.4049/jimmunol.167.7.3708
  28. Moon, J.J., Chu, H.H., Pepper, M., McSorley, S.J., Jameson, S.C., Kedl, R.M., and Jenkins, M.K. (2007). Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203-213. https://doi.org/10.1016/j.immuni.2007.07.007
  29. Neudorfer, J., Schmidt, B., Huster, K.M., Anderl, F., Schiemann, M., Holzapfel, G., Schmidt, T., Germeroth, L., Wagner, H., Peschel, C., et al. (2007). Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J. Immunol. Methods 320, 119-131. https://doi.org/10.1016/j.jim.2007.01.001
  30. Newell, E.W., Klein, L.O., Yu, W., and Davis, M.M. (2009). Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 6, 497-499. https://doi.org/10.1038/nmeth.1344
  31. Newell, E.W., Sigal, N., Nair, N., Kidd, B.A., Greenberg, H.B., and Davis, M.M. (2013). Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623-629. https://doi.org/10.1038/nbt.2593
  32. Niemiec, P.K., Read, L.R., and Sharif, S. (2006). Synthesis of chicken major histocompatibility complex class II oligomers using a baculovirus expression system. Protein Expr. Purif. 46, 390-400. https://doi.org/10.1016/j.pep.2005.09.001
  33. Oelke, M., Maus, M.V., Didiano, D., June, C.H., Mackensen, A., and Schneck, J.P. (2003). Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med. 9, 619-624. https://doi.org/10.1038/nm869
  34. O'Herrin, S.M., Slansky, J.E., Tang, Q., Markiewicz, M.A., Gajewski, T.F., Pardoll, D.M., Schneck, J.P., and Bluestone, J.A. (2001). Antigen-specific blockade of T cells in vivo using dimeric MHC peptide. J. Immunol. 167, 2555-2560. https://doi.org/10.4049/jimmunol.167.5.2555
  35. Rahimpour, A., Koay, H.F., Enders, A., Clanchy, R., Eckle, S.B., Meehan, B., Chen, Z., Whittle, B., Liu, L., Fairlie, D.P., et al. (2015). Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095-1108. https://doi.org/10.1084/jem.20142110
  36. Reantragoon, R., Corbett, A.J., Sakala, I.G., Gherardin, N.A., Furness, J.B., Chen, Z., Eckle, S.B., Uldrich, A.P., Birkinshaw, R.W., Patel, O., et al. (2013). Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305-2320. https://doi.org/10.1084/jem.20130958
  37. Rodenko, B., Toebes, M., Hadrup, S.R., van Esch, W.J., Molenaar, A.M., Schumacher, T.N., and Ovaa, H. (2006). Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 1, 1120-1132. https://doi.org/10.1038/nprot.2006.121
  38. Saini, S.K., Tamhane, T., Anjanappa, R., Saikia, A., Ramskov, S., Donia, M., Svane, I.M., Jakobsen, S.N., Garcia-Alai, M., Zacharias, M., et al. (2019). Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Sci. Immunol. 4, eaau9039. https://doi.org/10.1126/sciimmunol.aau9039
  39. Schmidt, J., Guillaume, P., Irving, M., Baumgaertner, P., Speiser, D., and Luescher, I.F. (2011). Reversible major histocompatibility complex I-peptide multimers containing Ni(2+)-nitrilotriacetic acid peptides and histidine tags improve analysis and sorting of CD8(+) T cells. J. Biol. Chem. 286, 41723-41735. https://doi.org/10.1074/jbc.M111.283127
  40. Schmitt, A., Tonn, T., Busch, D.H., Grigoleit, G.U., Einsele, H., Odendahl, M., Germeroth, L., Ringhoffer, M., Ringhoffer, S., Wiesneth, M., et al. (2011). Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51, 591-599. https://doi.org/10.1111/j.1537-2995.2010.02940.x
  41. Schneck, J.P., Slansky, J.E., O'Herrin, S.M., and Greten, T.F. (2001). Monitoring antigen-specific T cells using MHC-Ig dimers. Curr. Protoc. Immunol. 35, 17.2.1-17.2.17.
  42. Scholler, J., Singh, M., Bergmeier, L., Brunstedt, K., Wang, Y., Whittall, T., Rahman, D., Pido-Lopez, J., and Lehner, T. (2010). A recombinant human HLA-class I antigen linked to dextran elicits innate and adaptive immune responses. J. Immunol. Methods 360, 1-9. https://doi.org/10.1016/j.jim.2010.05.008
  43. Sidobre, S. and Kronenberg, M. (2002). CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 268, 107-121. https://doi.org/10.1016/S0022-1759(02)00204-1
  44. Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N.J., van de Kasteele, W., Rimmelzwaan, G.F., Haanen, J.B., Ovaa, H., et al. (2006). Design and use of conditional MHC class I ligands. Nat. Med. 12, 246-251. https://doi.org/10.1038/nm1360
  45. Tungatt, K., Bianchi, V., Crowther, M.D., Powell, W.E., Schauenburg, A.J., Trimby, A., Donia, M., Miles, J.J., Holland, C.J., Cole, D.K., et al. (2015) Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs. J. Immunol. 194, 463-474. https://doi.org/10.4049/jimmunol.1401785
  46. Wooldridge, L., Scriba, T.J., Milicic, A., Laugel, B., Gostick, E., Price, D.A., Phillips, R.E., and Sewell, A.K. (2006). Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers. Eur. J. Immunol. 36, 1847-1855. https://doi.org/10.1002/eji.200635886
  47. Wu, J., Groh, V., and Spies, T. (2002). T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J. Immunol. 169, 1236-1240. https://doi.org/10.4049/jimmunol.169.3.1236
  48. Yuan, R.R., Wong, P., McDevitt, M.R., Doubrovina, E., Leiner, I., Bornmann, W., O'Reilly, R., Pamer, E.G., and Scheinberg, D.A. (2004). Targeted deletion of T-cell clones using alpha-emitting suicide MHC tetramers. Blood 104, 2397-2402