DOI QR코드

DOI QR Code

Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index

위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링

  • Lee, Hee-Jin (Department of Bioresources and Rural Systems Engineering, National Agricultural Water Research Center, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Yoon, Dong-Hyun (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Kim, Ha-Young (School of Social Safety and Systems Engineering, Hankyong National University) ;
  • Woo, Seung-Beom (School of Social Safety and Systems Engineering, Hankyong National University) ;
  • Kim, Dae-Eui (Rural Research Institute, Korea Rural Community Corporation)
  • Received : 2021.03.09
  • Accepted : 2021.03.31
  • Published : 2021.05.31

Abstract

Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspiration for quantitative drought determination, ESI (Evaporative Stress Index), was applied and calculated through the ratio of MODIS- based actual and potential evapotranspiration. For the irrigated areas of Idong, Gosam, Geumgwang, and Madun reservoirs the availability of irrigation water supply, ponding depth, precipitation, paddy growth were investigated for the paddy field within one grid of MODIS. In addition, the percentile-based ESI drought severity was calculated to compare the growth process of paddy and changes in the drought category of ESI. The Idong area was irrigated about a week later than other reservoirs for the period of water supply, transplanting, and water drainage and the ESI drought category tended to be different. The Gosam, Geumgwang, and Madun area expressed moderate drought prior to the farming season, and indicated normal as the water was supplied. During the water drainage, the drought category intensified, indicating that the water available on land was decreasing. These results demonstrated that the MODIS-based ESI could be an effective tool for agricultural drought monitoring over paddy field area.

Keywords

Acknowledgement

본 연구는 행정안전부 극한재난대응기반기술개발사업의 연구비 지원 (2019-MOIS31-010)에 의해 수행되었습니다.

References

  1. Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations w ith US drought monitor classifications. Journal of Hydrometeorology 14(4): 1035-1056. doi:110.1175/JHM-D-12-0140.1.
  2. Anderson, M. C., C. R. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate 24: 2025-2044. doi:10.1175/2010JCLI3812.1.
  3. Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007. A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. model formulation. Journal of Geophysical Research 112(D10). doi:10.1029/2006JD007506.
  4. Chung, S. O., and K. J. Park, 2004. Irrigation return flow measurements and analysis in a small size paddy area. Journal of Korea Water Resources Association 37(7): 517-526 (in Korean). doi:10.3741/JKWRA.2004.37.7.517.
  5. Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003.
  6. Jeon, M. G., W. H. Nam, H. J. Lee, E. M. Hong, S. H. Hwang, and S. O. Hur, 2021. Drought risk assessment for upland crops using satellite-derived evapotranspiration and soil available water capacity. Journal of the Korean Society of Hazard Mitigation 21(1): 25-33. doi:10.9798/KOSHAM.2021.21.1.25.
  7. Kim, J. H., J. H. Lee, M. J. Park, and J. G. Joo, 2016. Effect of climate change scenarios and regional climate models on the drought severity-duration-frequency analysis. Journal of Korean Society of Hazard Mitigation 16(2): 351-361 (in Korean). doi:10.9798/KOSHAM.2016.16.2.351.
  8. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, D. E. Kim, M. D. Svoboda, T. Tadesse, and B. D. Wardlow, 2019. Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea. Journal of the Korean Society of Agricultural Engineers 61(3): 1-14 (in Korean). doi:10.5389/KSAE.2019.61.3.001.
  9. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, T. G. Kim, J. H. Park, and D. E. Kim, 2020. Percentile approach of drought severity classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers 62(2): 63-73 (in Korean). doi:10.5389/KSAE.2020.62.2.063.
  10. Ministry of Land Infrastructure and Transport (MLIT), 2002. 2001 Drought record research report. Sejong, Korea.
  11. Monteith, J. L., 1965. Evaporation and environment. Symposium of the Society of Experimental Biology 19: 205-224.
  12. Mun, Y. S., W. H. Nam, M. G. Jeon, H. J. Kim, K. Kang, J. C. Lee, T. H. Ha, and K. Y. Lee, 2020. Evaluation of regional drought vulnerability assessment based on agricultural water and reservoirs. Journal of the Korean Society of Agricultural Engineers 62(2): 97-109 (in Korean). doi:10.5389/KSAE.2020.62.2.97.
  13. Nam, W. H., M. J. Hayes, D. A. Wilhite, T. Tadesse, M. D. Svoboda, and C. L. Knutson, 2014. Drought management and policy based on risk assessment in the context of climate change. Magazine of the Korean Society of Agricultural Engineers 56(2): 2-15 (in Korean).
  14. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
  15. Nam, W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047.
  16. Nguyen, H., J. A. Otkin, M. C. Wheeler, P. Hope, B. Trewin, and C. Pudmenzky, 2020. Climatology and variability of the evaporative stress index and its suitability as a tool to monitor Australian drought. Journal of Hydrometeorology 21(10): 2309-2324. doi:10.1175/JHMD-20-0042.1.
  17. Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013. Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14(4): 1057-1074. doi:10.1175/JHM-D-12-0144.1.
  18. Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014. Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology 15(3): 938-956. doi:10.1175/JHM-D-13-0110.1.
  19. Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society 99(5): 911-919. doi:10.1175/BAMS-D-17-0149.1.
  20. Rosenberg, N. J., 1979. Drought in the great plains-research on impact and strategies. In Proceeding of the Workshop on Research in Great Plains Drought Management Strategies, 26-28, University of Nebraska, Lincoln, NE.
  21. Running, S. W., Q. Mu, M. Zhao, and A. Moreno, 2019. User's guide MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA earth observing system MODIS land algorithm (For collection 6). Washington, DC, USA: National Aeronautics and Space Administration.
  22. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181.
  23. Tadesse, T., J. F. Brown, and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry and Remote Sensing 59(4): 244-253. doi:10.1016/j.isprsjprs.2005.02.003.
  24. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. G. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers 60(6): 121-131 (in Korean). doi:10.5389/KSAE.2018.60.6.121.
  25. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, S. Feng, B. D. Wardlow, T. Tadesse, M. D. Svoboda, M. J. Hayes, and D. E. Kim, 2020a. Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing 12(3): 444-459. doi:10.3390/rs12030444.
  26. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, and T. G. Kim, 2020b. Drought hazard assessment using MODIS-based evaporative stress index (ESI) and ROC analysis. Journal of the Korean Society of Agricultural Engineers 62(3): 51-61 (in Korean). doi:10.5389/KSAE.2020.62.3.051.
  27. Zhong, Y., J. A. Otkin, M. C. Anderson, and C. Hain, 2020. Investigating the relationship between the evaporative stress index and land surface conditions in the contiguous United States. Journal of Hydrometeorology 21(7): 1469-1484. doi:10.1175/JHM-D-19-0205.1.