Acknowledgement
본 연구는 행정안전부 극한재난대응기반기술개발사업의 연구비 지원 (2019-MOIS31-010)에 의해 수행되었습니다.
References
- Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations w ith US drought monitor classifications. Journal of Hydrometeorology 14(4): 1035-1056. doi:110.1175/JHM-D-12-0140.1.
- Anderson, M. C., C. R. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate 24: 2025-2044. doi:10.1175/2010JCLI3812.1.
- Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007. A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. model formulation. Journal of Geophysical Research 112(D10). doi:10.1029/2006JD007506.
- Chung, S. O., and K. J. Park, 2004. Irrigation return flow measurements and analysis in a small size paddy area. Journal of Korea Water Resources Association 37(7): 517-526 (in Korean). doi:10.3741/JKWRA.2004.37.7.517.
- Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003.
- Jeon, M. G., W. H. Nam, H. J. Lee, E. M. Hong, S. H. Hwang, and S. O. Hur, 2021. Drought risk assessment for upland crops using satellite-derived evapotranspiration and soil available water capacity. Journal of the Korean Society of Hazard Mitigation 21(1): 25-33. doi:10.9798/KOSHAM.2021.21.1.25.
- Kim, J. H., J. H. Lee, M. J. Park, and J. G. Joo, 2016. Effect of climate change scenarios and regional climate models on the drought severity-duration-frequency analysis. Journal of Korean Society of Hazard Mitigation 16(2): 351-361 (in Korean). doi:10.9798/KOSHAM.2016.16.2.351.
- Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, D. E. Kim, M. D. Svoboda, T. Tadesse, and B. D. Wardlow, 2019. Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea. Journal of the Korean Society of Agricultural Engineers 61(3): 1-14 (in Korean). doi:10.5389/KSAE.2019.61.3.001.
- Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, T. G. Kim, J. H. Park, and D. E. Kim, 2020. Percentile approach of drought severity classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers 62(2): 63-73 (in Korean). doi:10.5389/KSAE.2020.62.2.063.
- Ministry of Land Infrastructure and Transport (MLIT), 2002. 2001 Drought record research report. Sejong, Korea.
- Monteith, J. L., 1965. Evaporation and environment. Symposium of the Society of Experimental Biology 19: 205-224.
- Mun, Y. S., W. H. Nam, M. G. Jeon, H. J. Kim, K. Kang, J. C. Lee, T. H. Ha, and K. Y. Lee, 2020. Evaluation of regional drought vulnerability assessment based on agricultural water and reservoirs. Journal of the Korean Society of Agricultural Engineers 62(2): 97-109 (in Korean). doi:10.5389/KSAE.2020.62.2.97.
- Nam, W. H., M. J. Hayes, D. A. Wilhite, T. Tadesse, M. D. Svoboda, and C. L. Knutson, 2014. Drought management and policy based on risk assessment in the context of climate change. Magazine of the Korean Society of Agricultural Engineers 56(2): 2-15 (in Korean).
- Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
- Nam, W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047.
- Nguyen, H., J. A. Otkin, M. C. Wheeler, P. Hope, B. Trewin, and C. Pudmenzky, 2020. Climatology and variability of the evaporative stress index and its suitability as a tool to monitor Australian drought. Journal of Hydrometeorology 21(10): 2309-2324. doi:10.1175/JHMD-20-0042.1.
- Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013. Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14(4): 1057-1074. doi:10.1175/JHM-D-12-0144.1.
- Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014. Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology 15(3): 938-956. doi:10.1175/JHM-D-13-0110.1.
- Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society 99(5): 911-919. doi:10.1175/BAMS-D-17-0149.1.
- Rosenberg, N. J., 1979. Drought in the great plains-research on impact and strategies. In Proceeding of the Workshop on Research in Great Plains Drought Management Strategies, 26-28, University of Nebraska, Lincoln, NE.
- Running, S. W., Q. Mu, M. Zhao, and A. Moreno, 2019. User's guide MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA earth observing system MODIS land algorithm (For collection 6). Washington, DC, USA: National Aeronautics and Space Administration.
- Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181.
- Tadesse, T., J. F. Brown, and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry and Remote Sensing 59(4): 244-253. doi:10.1016/j.isprsjprs.2005.02.003.
- Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. G. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers 60(6): 121-131 (in Korean). doi:10.5389/KSAE.2018.60.6.121.
- Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, S. Feng, B. D. Wardlow, T. Tadesse, M. D. Svoboda, M. J. Hayes, and D. E. Kim, 2020a. Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing 12(3): 444-459. doi:10.3390/rs12030444.
- Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, and T. G. Kim, 2020b. Drought hazard assessment using MODIS-based evaporative stress index (ESI) and ROC analysis. Journal of the Korean Society of Agricultural Engineers 62(3): 51-61 (in Korean). doi:10.5389/KSAE.2020.62.3.051.
- Zhong, Y., J. A. Otkin, M. C. Anderson, and C. Hain, 2020. Investigating the relationship between the evaporative stress index and land surface conditions in the contiguous United States. Journal of Hydrometeorology 21(7): 1469-1484. doi:10.1175/JHM-D-19-0205.1.