DOI QR코드

DOI QR Code

딥러닝의 반복적 예측방법을 활용한 철근 가격 장기예측에 관한 실험적 연구

Experimental Study on Long-Term Prediction of Rebar Price Using Deep Learning Recursive Prediction Meothod

  • 이용성 (건국대학교 일반대학원 건축학과) ;
  • 김경환 (건국대학교 건축공학부)
  • Lee, Yong-Seong (Department of Architecture, Konkuk University Department of Architectural, Graduate School, Konkuk University) ;
  • Kim, Kyung-Hwan (Department of Architecture, Konkuk University)
  • 투고 : 2021.01.25
  • 심사 : 2021.04.20
  • 발행 : 2021.05.31

초록

본 연구는 딥러닝의 반복적 예측방식을 활용하여 5개월의 철근 가격 예측방법을 제안한다. 이 방식은 입력데이터의 특성을 모두 단기예측하여 원 데이터에 추가하고, 추가된 데이터로 다음의 시점을 예측하는 과정을 반복하여 장기 예측한다. 본 연구에서 제시하는 방식으로 1개월에서 5개월까지 예측한 철근 가격의 예측 평균 정확도는 약 97.24%이다. 제안된 방식을 통해 인간의 경험과 판단을 통한 가격 추정방법의 체계성을 보완하여 기존의 방식보다 정확한 비용계획이 가능할 것으로 사료된다. 또 철근 이외의 건축재료를 비롯하여 시계열 데이터로 가격을 장기예측하는 연구에서 본 연구에서 제시한 방법이 활용될 수 있을 것으로 기대한다.

This study proposes a 5-month rebar price prediction method using the recursive prediction method of deep learning. This approach predicts a long-term point in time by repeating the process of predicting all the characteristics of the input data and adding them to the original data and predicting the next point in time. The predicted average accuracy of the rebar prices for one to five months is approximately 97.24% in the manner presented in this study. Through the proposed method, it is expected that more accurate cost planning will be possible than the existing method by supplementing the systematicity of the price estimation method through human experience and judgment. In addition, it is expected that the method presented in this study can be utilized in studies that predict long-term prices using time series data including building materials other than rebar.

키워드

참고문헌

  1. Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). "Pearson correlation coefficient." In Noise reduction in speech processing, Springer, Berlin, Heidelberg, pp. 1-4.
  2. Bergstra, J., and Bengio, Y. (2012). "Random search for hyper-parameter optimization." The Journal of Machine Learning Research, 13(1), pp. 281-305.
  3. Choi, J., and Lee, S. (2020). "Short-term wind power forecast using hourly LSTM technique." Korean Institute of Electrical Engineers, 69(6), pp. 759-764. https://doi.org/10.5370/KIEE.2020.69.6.759
  4. Choi, M., and Kwon, O. (2008). "Construction material cost increase and countermeasures." Construction trend briefing by Korea Institute of Construction Industry, 6, pp. 2-34.
  5. Choi, Y., Yim, H., and Park, B. (2009). "Analysis on the Lotting Price Fluctuation of the Multi-Family Attached House According to the Construction Material Cost Variation." Journal of The Korean Society of Civil Engineers, 29(6D), pp. 753-760.
  6. Hen, X., Wei, L., and Xu, J. (2017). "House price prediction using lstm." arXiv preprint arXiv:1709.08432.
  7. Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural computation, 9(8), pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  8. Jeong, D. (2017). "Trend on Artificial Intelligence Technology and Its Related Industry." Korea Institute of Information Technology Magazine, 15(2), pp. 21-28. https://doi.org/10.14801/jkiit.2017.15.5.21
  9. Ji, S., Goo, Y., Baek, U., Park, J., and Yoon, S. (2019). "LSTM Learning Data Selection Technique for Number of Bitcoin Transactions Prediction." In KNOM Conference.
  10. Kim, B., Jung, S., Kim, M., Kim, J., Lee, H., and Kim, S. (2020a). "Solar Power Generation Forecasting based on LSTM considering Weather Conditions." Journal of Korean Institute of Intelligent Systems, 30(1), pp. 7-12. https://doi.org/10.5391/JKIIS.2020.30.1.7
  11. Kim, J., Lee, S.H., Choi, Y., and Woo, S. (2020b). "Long-term Settlement Prediction of Railway Concrete Track Based on Recurrent Neural Network (RNN)" Journal of the Korean Geotechnical Society, 36(3), pp. 5-14.
  12. Lahari, M.C., Ravi, D.H., and Bharathi, R. (2018). "Fuel Price Prediction Using RNN." In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, pp. 1510-1514.
  13. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). "An empirical evaluation of deep architectures on problems with many factors of variation." In Proceedings of the 24th International Conference on Machine Learning, pp. 473-480.
  14. Lee, J., Yoo, J., Kim, C., Lee, G., and Lim, B. (2008). "How to calculate the order point considering the fluctuations in demand for materials at construction sites." Journal of the Architectural Institute of Korea-Structural System, 24 (10), pp. 117-125.
  15. Lee, Y., and Kim, K. (2020a). "Experimental Study on the Short-Term Prediction of Rebar Price using Bidirectional LSTM with Data Combination and Deep Learning Related Techniques." Korean Journal of Construction Engineering and Management, KICEM, 21(6), pp. 38-45. https://doi.org/10.6106/KJCEM.2020.21.6.038
  16. Lee, Y., and Kim, K. (2020b). "Experimental Study on the Expansion of the Short-term Prediction Range of Rebar Prices Using Deep Learning." Journal of The Architectural Institute of Korea, 36(12), pp. 265-272. https://doi.org/10.5659/JAIK.2020.36.12.265
  17. Nayak, S., Misra, B., and Behera, H. (2014). "Impact of data normalization on stock index forecasting." International Journal of Computer Information Systems and Industrial Management Applications, 6, pp. 257-269.
  18. Pawar, K., Jalem, R., and Tiwari, V. (2019). "Stock market price prediction using LSTM RNN." In Emerging Trends in Expert Applications and Security, pp. 493-503. Springer, Singapore.
  19. Rumelhart, D., Hinton, G., and Williams, R. (1985). Learning internal representations by error propagation (No. ICS-8506), California Univ San Diego La Jolla Inst for Cognitive Science, (No. ICS-8506), pp. 318-362.
  20. Schuster, M., and Paliwal, K. (1997). "Bidirectional recurrent neural networks." IEEE transactions on Signal Processing, 45(11), pp. 2673-2681. https://doi.org/10.1109/78.650093
  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research, 15(1), pp. 1929-1958.
  22. Taieb, S., Sorjamaa, A., and Bontempi, G. (2010). "Multiple-output modeling for multi-step-ahead time series forecasting." Neurocomputing, 73(10-12), pp. 1950-1957. https://doi.org/10.1016/j.neucom.2009.11.030
  23. Willmott, C., and Matsuura, K. (2005). "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance." Climate research, 30(1), pp. 79-82. https://doi.org/10.3354/cr030079
  24. Tensorflow.org. (2020). Overfitting and underfitting. accessed Sep 27, 2020, https://www.tensorflow.org/tutorials/keras/overfit_and_underfit.stand.