참고문헌
- Abassi, M. K., M. M. Tahir, N. Sabir, and M. Khurshid, 2015. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth 6(1): 197-205. doi:10.5194/se-6-197-2015.
- Abubaker, J., H. Cederlund, V. Arthurson, and M. Pell, 2013. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Applied Soil Ecology 72: 171-180. doi:10.1016/j.apsoil.2013.07.002.
- Alburquerque, J. A., C. de la Fuente, and M. P. Bernal, 2012. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agriculture Ecosystems and Environment 160: 15-22. doi:10.1016/j.agee.2011.03.007.
- Barbosa, D. B. P., M. Nabel, and N. D. Jablonowski, 2014. Biogas-digestate as nutrient source for biomass production of Sida Hermaphrodita, Zea Mays L. and Medicago sativa L. Energy Procedia 59: 120-126. doi:10.1016/j.egypro.2014.10.357.
- Bodirsky, B. L., A. Popp, H. Lotze-Campen, J. P. Dietrich, S. Rolinski, and I. Weindl., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5: 3858. doi:10.1038/ncomms4858.
- Burger, M., and L. E. Jackson, 2003. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry 35(1): 29-36. doi:10.1016/S0038-0717(02)00233-X.
- Crolla, A., C. Kinsley, and E. Pattey, 2013. Land application of digestate. The Biogas Handbook, Woodhead Publishing 302-325.
- Fangueiro, D., M. Hjorth, and F. Gioelli, 2015. Acidification of animal slurry - a review. Journal of Environmental Management 149: 46-56. doi:10.1016/j.jenvman.2014.10.001.
- Fuente, De la C., R. Clemente, J. Martinez, and M. P. Bernal, 2010. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere 81(5): 603-610. doi:10.1016/j.chemosphere.2010.08.026.
- Galvez, A., T. Sinicco, M. L. Cayuela, M. D. Mingorance, F. Fornasier, and C. Mondini, 2012. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems and Environment 160: 3-14. doi:10.1016/j.agee.2011.06.015.
- Huijsmans, J. F. M., J. M. G. Hol, and D. W. Bussink, 1997. Reduction of ammonia emission by new slurry application techniques on grassland. In: Gaseous nitrogen emissions from grasslands, eds SC Jarvis & BF Pain, CAB International Wallingford UK, 281-285.
- Insam, H., M. Gomez-Brandon, and J. Ascher, 2015. Manure-based biogas fermentation residues - Friend or foe of soil fertility, Soil Biology and Biochemistry 84: 1-14. doi:10.1016/j.soilbio.2015.02.006.
- Kebibeche, H., O. Khelil, M. Kacem, and K. M. Harche, 2019. Addition of wood sawdust during the co-composting of sewage sludge and wheat straw influences seeds germination. Ecotoxicology and Environmental Safety 168: 423-430. doi:10.1016/j.ecoenv.2018.10.075.
- Li, F., Z. Wang, J. Dai, Q. Li, X. Wang, and C. Xue, 2015. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biology and Fertility of Soils 51: 769-780. doi:10.1007/s00374-015-1023-2.
- Moller, K., 2015. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity: A review. Agronomy for Sustainable Development 35: 1021-1041. doi:10.1007/s13593-015-0284-3.
- Moller, K., and T. Muller, 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences 12(3): 242-257. doi:10.1002/elsc.201100085.
- Moller, K., W. Stinner, and G. Leithold, 2008. Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutrient Cycling in Agroecosystems 82: 233. doi:10.1007/s10705-008-9182-2.
- Nicholson, F., A. Bhogal, L. Cardenas, and D. Chadwick, T. Misselbrook, A. Rollett, 2017. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environmental Pollution 228: 504-516. doi:10.1016/j.envpol.2017.05.023.
- Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34: 473-492. doi:10.1007/s13593-013-0196-z.
- Pan, F.-F., W. T. Yu., Q. Ma, H. Zhou, C. M. Jiang, and Y. G. Xu, 2017. Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils. Biology and Fertility of Soils 53: 303-313. doi:10.1007/s00374-017-1177-1.
- Pain, B. F., T. H. Misselbrook, C. R. Clarkson, and Y. J. Rees, 1990. Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland. Biological Wastes 34(3): 259-267. doi:10.1016/0269-7483(90)90027-P.
- Plante, A. F., and W. J. Parton, 2007. The dynamics of soil organic matter and nutrient cycling, in Soil Microbiology Ecology and Biochemistry, 3rd Ed., 433-467. doi:10.1016/B978-0-08-047514-1.50020-2.
- Reichel, R., J. Wei, M. S. Islam, C. Schmid, H. Wissel, and P. Schroder, 2018. Potential of wheat straw, spruce sawdust, and lignin as high organic carbon soil amendments to improve agricultural nitrogen retention capacity: An incubation study. Frontiers in Plant Science 9: 900. doi:10.3389/fpls.2018.00900.
- Rigby, H., and S. R Smith, 2013. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Management 33(12): 2641-2652. doi:10.1016/j.wasman.2013.08.005.
- Riva, C., V. Orzi, M. Carozzi, M. Acutis, G. Boccasile, and S. Lonati, 2016. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Science of The Total Environment 547: 206-214. doi:10.1016/j.scitotenv.2015.12.156.
- Sawada, K., and K. Toyota, 2015. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification. Microbes and Environments 30(1): 37-43. doi:10.1264/jsme2.ME14080.
- Smith, R. L., T. M. Smith, and M. S. Thomas, 1998. Elements of Ecology. Benjamin-Cummings Pub. Co., San Francisco, CA.
- Soares, J. R., H. Cantarella, and M. L. d. C. Menegale, 2012. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52: 82-89. doi:10.1016/j.soilbio.2012.04.019.
- Tampio, E.,T. Salo, and J. Rintala, 2016. Agronomic characteristics of five different urban waste digestates. Journal of Environmental Management 169: 293-302. doi:10.1016/j.jenvman.2016.01.001.
- Ti, C., L. Xia, S. X. Chang, and X. Yan, 2019. Potential for mitigating global agricultural ammonia emission: A metaanalysis. Environmental Pollution 245: 141-148. doi:10.1016/j.envpol.2018.10.124.
- Tiwary, A., I. D. Williams, D. C. Pant, and V. V. N. Kishore, 2015. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate. Environmental Pollution 203: 262-270. doi:10.1016/j.envpol.2015.02.001.
- Wang, Y., S. Chikamatsu, T. Gegen, K. Sawada, K. Toyota, and S. Riya, 2019. Application of biogas digestate with rice straw mitigates nitrate leaching potential and suppresses root-knot nematode (Meloidogyne incognita).. Agronomy 9(5): 227. doi:10.3390/agronomy9050227
- Wysocka-Czubaszek, A., 2019. Dynamics of nitrogen transformations in soil fertilized with digestate from agricultural biogas plant. Journal of Ecological Engineering 20(1): 108-117. doi:10.12911/22998993/93795.