DOI QR코드

DOI QR Code

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate

혐기성 소화액의 농지환원에 따른 질소 거동

  • Nkombo, Laure Lysette Chimi (Polyvalent Station of Agricultural Research, Institute of Agricultural Research for Development) ;
  • Hong, Seong Gu (Department of Bioresources and Rural Systems Engineering, Hankyong National University)
  • Received : 2021.01.29
  • Accepted : 2021.03.29
  • Published : 2021.05.31

Abstract

Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Keywords

References

  1. Abassi, M. K., M. M. Tahir, N. Sabir, and M. Khurshid, 2015. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth 6(1): 197-205. doi:10.5194/se-6-197-2015.
  2. Abubaker, J., H. Cederlund, V. Arthurson, and M. Pell, 2013. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Applied Soil Ecology 72: 171-180. doi:10.1016/j.apsoil.2013.07.002.
  3. Alburquerque, J. A., C. de la Fuente, and M. P. Bernal, 2012. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agriculture Ecosystems and Environment 160: 15-22. doi:10.1016/j.agee.2011.03.007.
  4. Barbosa, D. B. P., M. Nabel, and N. D. Jablonowski, 2014. Biogas-digestate as nutrient source for biomass production of Sida Hermaphrodita, Zea Mays L. and Medicago sativa L. Energy Procedia 59: 120-126. doi:10.1016/j.egypro.2014.10.357.
  5. Bodirsky, B. L., A. Popp, H. Lotze-Campen, J. P. Dietrich, S. Rolinski, and I. Weindl., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5: 3858. doi:10.1038/ncomms4858.
  6. Burger, M., and L. E. Jackson, 2003. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry 35(1): 29-36. doi:10.1016/S0038-0717(02)00233-X.
  7. Crolla, A., C. Kinsley, and E. Pattey, 2013. Land application of digestate. The Biogas Handbook, Woodhead Publishing 302-325.
  8. Fangueiro, D., M. Hjorth, and F. Gioelli, 2015. Acidification of animal slurry - a review. Journal of Environmental Management 149: 46-56. doi:10.1016/j.jenvman.2014.10.001.
  9. Fuente, De la C., R. Clemente, J. Martinez, and M. P. Bernal, 2010. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere 81(5): 603-610. doi:10.1016/j.chemosphere.2010.08.026.
  10. Galvez, A., T. Sinicco, M. L. Cayuela, M. D. Mingorance, F. Fornasier, and C. Mondini, 2012. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems and Environment 160: 3-14. doi:10.1016/j.agee.2011.06.015.
  11. Huijsmans, J. F. M., J. M. G. Hol, and D. W. Bussink, 1997. Reduction of ammonia emission by new slurry application techniques on grassland. In: Gaseous nitrogen emissions from grasslands, eds SC Jarvis & BF Pain, CAB International Wallingford UK, 281-285.
  12. Insam, H., M. Gomez-Brandon, and J. Ascher, 2015. Manure-based biogas fermentation residues - Friend or foe of soil fertility, Soil Biology and Biochemistry 84: 1-14. doi:10.1016/j.soilbio.2015.02.006.
  13. Kebibeche, H., O. Khelil, M. Kacem, and K. M. Harche, 2019. Addition of wood sawdust during the co-composting of sewage sludge and wheat straw influences seeds germination. Ecotoxicology and Environmental Safety 168: 423-430. doi:10.1016/j.ecoenv.2018.10.075.
  14. Li, F., Z. Wang, J. Dai, Q. Li, X. Wang, and C. Xue, 2015. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biology and Fertility of Soils 51: 769-780. doi:10.1007/s00374-015-1023-2.
  15. Moller, K., 2015. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity: A review. Agronomy for Sustainable Development 35: 1021-1041. doi:10.1007/s13593-015-0284-3.
  16. Moller, K., and T. Muller, 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences 12(3): 242-257. doi:10.1002/elsc.201100085.
  17. Moller, K., W. Stinner, and G. Leithold, 2008. Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutrient Cycling in Agroecosystems 82: 233. doi:10.1007/s10705-008-9182-2.
  18. Nicholson, F., A. Bhogal, L. Cardenas, and D. Chadwick, T. Misselbrook, A. Rollett, 2017. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environmental Pollution 228: 504-516. doi:10.1016/j.envpol.2017.05.023.
  19. Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34: 473-492. doi:10.1007/s13593-013-0196-z.
  20. Pan, F.-F., W. T. Yu., Q. Ma, H. Zhou, C. M. Jiang, and Y. G. Xu, 2017. Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils. Biology and Fertility of Soils 53: 303-313. doi:10.1007/s00374-017-1177-1.
  21. Pain, B. F., T. H. Misselbrook, C. R. Clarkson, and Y. J. Rees, 1990. Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland. Biological Wastes 34(3): 259-267. doi:10.1016/0269-7483(90)90027-P.
  22. Plante, A. F., and W. J. Parton, 2007. The dynamics of soil organic matter and nutrient cycling, in Soil Microbiology Ecology and Biochemistry, 3rd Ed., 433-467. doi:10.1016/B978-0-08-047514-1.50020-2.
  23. Reichel, R., J. Wei, M. S. Islam, C. Schmid, H. Wissel, and P. Schroder, 2018. Potential of wheat straw, spruce sawdust, and lignin as high organic carbon soil amendments to improve agricultural nitrogen retention capacity: An incubation study. Frontiers in Plant Science 9: 900. doi:10.3389/fpls.2018.00900.
  24. Rigby, H., and S. R Smith, 2013. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Management 33(12): 2641-2652. doi:10.1016/j.wasman.2013.08.005.
  25. Riva, C., V. Orzi, M. Carozzi, M. Acutis, G. Boccasile, and S. Lonati, 2016. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Science of The Total Environment 547: 206-214. doi:10.1016/j.scitotenv.2015.12.156.
  26. Sawada, K., and K. Toyota, 2015. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification. Microbes and Environments 30(1): 37-43. doi:10.1264/jsme2.ME14080.
  27. Smith, R. L., T. M. Smith, and M. S. Thomas, 1998. Elements of Ecology. Benjamin-Cummings Pub. Co., San Francisco, CA.
  28. Soares, J. R., H. Cantarella, and M. L. d. C. Menegale, 2012. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52: 82-89. doi:10.1016/j.soilbio.2012.04.019.
  29. Tampio, E.,T. Salo, and J. Rintala, 2016. Agronomic characteristics of five different urban waste digestates. Journal of Environmental Management 169: 293-302. doi:10.1016/j.jenvman.2016.01.001.
  30. Ti, C., L. Xia, S. X. Chang, and X. Yan, 2019. Potential for mitigating global agricultural ammonia emission: A metaanalysis. Environmental Pollution 245: 141-148. doi:10.1016/j.envpol.2018.10.124.
  31. Tiwary, A., I. D. Williams, D. C. Pant, and V. V. N. Kishore, 2015. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate. Environmental Pollution 203: 262-270. doi:10.1016/j.envpol.2015.02.001.
  32. Wang, Y., S. Chikamatsu, T. Gegen, K. Sawada, K. Toyota, and S. Riya, 2019. Application of biogas digestate with rice straw mitigates nitrate leaching potential and suppresses root-knot nematode (Meloidogyne incognita).. Agronomy 9(5): 227. doi:10.3390/agronomy9050227
  33. Wysocka-Czubaszek, A., 2019. Dynamics of nitrogen transformations in soil fertilized with digestate from agricultural biogas plant. Journal of Ecological Engineering 20(1): 108-117. doi:10.12911/22998993/93795.