DOI QR코드

DOI QR Code

eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir

  • 곽태수 (경상국립대학교 기계공학부) ;
  • 김원석 (전남대학교 해양융합과학과) ;
  • 이선호 (전남대학교 해양융합과학과) ;
  • 곽인실 (전남대학교 해양융합과학과)
  • Kwak, Tae-Soo (School of Mechanical Engineering, Gyeongsang National University) ;
  • Kim, Won-Seok (Department of Ocean Integrated Science, Chonnam National University) ;
  • Lee, Sun Ho (Department of Ocean Integrated Science, Chonnam National University) ;
  • Kwak, Ihn-Sil (Department of Ocean Integrated Science, Chonnam National University)
  • 투고 : 2021.12.03
  • 심사 : 2021.12.13
  • 발행 : 2021.12.31

초록

필터의 손상 없이 포집할 수 있는 필터케이스를 적용하고, 전압 제어와 압력 제어를 각각 할 수 있는 펌프 방식의 eDNA 포집 및 채수 시스템을 개발하여 집수매거 취수원을 대상으로 종래의 진공압 방식의 포집 및 추출 실험과 eDNA 농도를 비교함으로써 개발 시스템의 필터링 성능을 평가하였다. 개발된 시스템은 전압제어(Manual pump system) 방식과 압력제어(Automatic pump system) 방식으로 구분하여 필터링 시 필터기 내부 압력을 측정하고 각 시스템의 압력 변화를 비교하였다. 전압제어 방식은 필터링 초기에 65 [KPa]로 시작하여 필터링 시간이 경과함에 따라 필터에 축적되는 여과물의 양이 증가하므로 압력이 점진적으로 증가하였다. 압력제어 방식은 설계된 알고리즘에 따라 일정 압력을 유지하도록 제어한 결과, 압력 센서의 피드백 시간에 따라 필터링 과정에서 압력 변동의 폭은 차이가 있으나 목표 압력에 수렴하는 것을 확인하였다. 개발된 시스템의 필터링 성능을 확인하기 위해 eDNA 농도를 측정하고 전압제어 방식과 압력제어 방식을 대조군과 비교하였다. 전압제어 방식은 대조군과 유사한 결과를 얻을 수 있었으나 압력제어 방식은 대조군에 비해 낮게 나타났다. 압력제어 방식의 경우 필터링 시 압력 편차가 크고, 필터링 과정에서 일정한 압력을 유지하기 때문에 나타난 결과로 사료된다. 따라서 필터링 시에는 일정한 압력을 유지하는 것보다 필터링 시간 경과와 함께 여과물의 증가에 따라 압력이 점진적으로 증가하는 전압제어 방식이 eDNA를 포집하는데 적합함을 확인하였다. 정수역과 유수역의 eDNA 평균농도를 대조군으로 비교한 결과, 각각 96.2 [ng µL-1], 88.4 [ng µL-1]로 나타났으며, 펌프 방식으로 eDNA 평균농도를 비교한 결과는 각각 90.7 [ng µL-1], 74.8 [ng µL-1]로 정수역에서 필터링한 시료에서 높게 나타났다. 정수역에서 eDNA 농도가 높게 나타난 것은 잔존하는 eDNA를 비롯한 미세 유기물의 영향으로 사료된다.

A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

키워드

과제정보

이 논문은 2020년도 경상국립대학교 대학회계 연구비 지원에 의하여 연구되었음.

참고문헌

  1. Aman, J., M.T. Kinnison, V. Holmes and C. Gottsegen. 2020. Developing Cost Effective Monitoring for Rainbow Smelt Using eDNA. Casco Bay Estuary Partnership. pp. 1-29.
  2. Choi, B. and M. Kang. 2018. Availability evaluation of TOC as the environmental standard, survey of lakes in Nakdong river basin. Journal of Wetlands Research 20(2): 173-180. https://doi.org/10.17663/JWR.2018.20.2.173
  3. Davis, S.D., S.W. Golladay, G. Vellidis and C.M. Pringle. 2003. Macro invertebrate biomonitoring in intermittent coastal plain stream impacted by animal agriculture. Journal of Environmental Quality 32(3): 1036-1043. https://doi.org/10.2134/jeq2003.1036
  4. Djurhuus, A., J. Port, C.J. Closek, K.M. Yamahara, O. Romero-Maraccini, K.R. Walz, D.B. Goldsmith, R. Michisaki, M. Breitbart, A.B. Boehm and F.P. Chavez. 2017. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Frontiers in Marine Science 4: 314. https://doi.org/10.3389/fmars.2017.00314
  5. Jo, M.H., M.J. Lee, E.W. Seo and J.E. Lee. 2019. Analysis of functional habitat groups and community stability of benthic macroinvertebrates before and after Yeongju Dam completion in Korea. Korean Journal of Environmental Biology 37(4): 664-671. https://doi.org/10.11626/KJEB.2019.37.4.664
  6. Kim, G. and Y. Song. 2021. Identification of freshwater fish species in Korea using environmental DNA technique, from the experiment at the freshwater fish ecological learning center in Yangpyeong, Gyeonggi Do. Journal of Environmental Impact Assessment 30(1): 1-12. https://doi.org/10.14249/EIA.2021.30.1.1
  7. Kim, J.H., S.K. Han, J.P. Lee and J.Y. Kim. 2010. Development of automatic water sampler with sensor for practical measurement. Applied Chemistry for Engineering 21(6): 632-637.
  8. Kwak, I.-S., Y.-S. Park and K.-H. Chang. 2021. Application and Utilization of Environmental DNA Technology for Biodiversity in Water Ecosystems. Korean Journal of Ecology and Environment 54(3): 151-155. https://doi.org/10.11614/KSL.2021.54.3.151
  9. Lee, S.K., Y.J. Kwon, J.L. Kim, S.M. Hwang and G.S. Jeon. 2006. Determination of on-line TOC monitoring in water quality monitoring system. Journal of Korean Society for Environmental Analysis 9: 235.
  10. Lee, S.M., S.H. Park, I.S. Kwak, H.H. Kim and T.S. Kwak. 2021. Effect of the internal shape of eDNA filter case made by the PBF method metal 3D printer on water sampling performance. Journal of the Korean Society of Manufacturing Process Engineers 20(8): 74-79.
  11. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato and W. Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2(7): 150088. https://doi.org/10.1098/rsos.150088
  12. Osathanunkul, M. and T. Minamoto. 2020. A molecular survey based on eDNA to assess the presence of a clown featherback (Chitala ornata) in a confined environment. Peer J 8: e10338. https://doi.org/10.7717/peerj.10338
  13. Petiz, D.G. 1989. Macroinvertebrate biomonitoring as an indicator of water quality: status report for pipestone Creek. Pipestone National Monument 2002: 1-13.
  14. Sanches, T.M and A.D. Schreier. 2020. Optimizing an eDNA protocol for estuarine environments: Balancing sensitivity cost and time. Plos One 15(5): e0233522. https://doi.org/10.1371/journal.pone.0233522
  15. Schabacker, J.C., S.J. Amish, B.K. Ellis, B. Gardner, D.L. Miller, E.A. Rutledge and G. Luikart. 2020. Increased eDNA detection sensitivity using a novel high-volume water sampling method. Environmental DNA 2(2): 244-251. https://doi.org/10.1002/edn3.63
  16. Sin, H.S., O. Mitamura, S.J. Kim and J.K. Choi. 2008. Characters of musim stream by surveyed sites based on EPT-group of aquatic insects. Korean Journal of Environment and Ecology 22(4): 420-426.