DOI QR코드

DOI QR Code

용매 특성에 따른 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 분자에서 글리세롤 골격 구조에 대한 MD 시뮬레이션 연구

MD Simulation Study for Preferred Structure of Glycerol Backbone in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) Molecule According to Solvent Properties

  • 양지현 (연세대학교 화공생명공학과) ;
  • 허유진 (연세대학교 화공생명공학과) ;
  • 안익성 (연세대학교 화공생명공학과) ;
  • 민병진 (배재대학교 화학과)
  • Yang, Ji-yun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Huh, Eugene (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Ik-sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Mhin, Byung-jin (Department of Chemistry, Paichai University)
  • 투고 : 2020.06.10
  • 심사 : 2020.07.15
  • 발행 : 2021.06.20

초록

본 연구에서는 용매 특성에 따른 인지질 내 글리세롤 골격 구조 변화를 알아보기 위해서 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 단분자에 대한 분자동역학 시뮬레이션을 용매 특성을 변화시켜가며 진행하였다. DOPC 골격구조는 인지질 내 글리세롤 C1-C2 결합의 비틀림각에 따라 A(θ3 = trans, θ4 = gauche), B(θ3 = gauche, θ4 = gauche-), C(θ3 = gauche-, θ4 = trans) 세가지 형태로 구분된다. 용매의 유전상수와 표면장력을 변수로 하여 DOPC의 골격 구조 변화를 살펴본 결과, 유전상수가 증가할수록, 표면장력이 클수록 B 구조의 빈도가 증가하였으며 그 이유는 B 구조의 solvation 에너지가 A에 비해서 더 크고, 표면적이 A에 비해서 작기 때문이다. 이러한 연구 결과는 추후 인지질 구조 연구에 활용될 것으로 기대된다.

In this study, the molecular dynamics simulation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single molecule was conducted by changing the solvent properties in order to investigate the change in the glycerol backbone structure in phospholipids according to the solvent properties. DOPC has three different conformations according to glycerol C1-C2 bond: A(θ3 = trans, θ4 = gauche), B(θ3 = gauche, θ4 = gauche-), C(θ3 = gauche-, θ4 = trans). Changes in the glycerol backbone structure of the DOPC were examined using the solvent's dielectric constant and surface tension constant as variables. As a result, the population of the B structure increased as the dielectric constant increased. The reason is that the solvation energy of the B structure is larger than that of A. In addition, as the surface tension constant increased, the population of the B structure increased because the surface area of B was smaller than that of A. The results of these studies are expected to be used in the study of phospholipid structure in the future.

키워드

과제정보

Publication cost of this paper was supported by the Korean Chemical Society.

참고문헌

  1. Gunstone, F. D. Phospholipid technology and applications; Elsevier: 2008.
  2. Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. Asian Journal of Pharmaceutical Sciences 2015, 10, 81. https://doi.org/10.1016/j.ajps.2014.09.004
  3. Lichtenberg, D.; Robson, R. J.; Dennis, E. A. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1983, 737, 285. https://doi.org/10.1016/0304-4157(83)90004-7
  4. Lea, C.; Rhodes, D.; Stoli, R. Biochemical Journal 1955, 60, 353. https://doi.org/10.1042/bj0600353
  5. Kass, G. S. Water Soluble Lecithin Composition; Google Patents: 1979.
  6. Hanahan, D. J. A Guide To Phospholipid Chemistry; Oxford University Press on Demand: 1997.
  7. Bangham, A. Annual Review of Biochemistry 1972, 41, 753. https://doi.org/10.1146/annurev.bi.41.070172.003541
  8. Lyubartsev, A. P.; Rabinovich, A. L. Soft Matter 2011, 7, 25. https://doi.org/10.1039/c0sm00457j
  9. Orsi, M.; Sanderson, W.; Essex, J. W. Molecular Interactions: Bringing Chemistry to Life; 2007; pp. 185-205.
  10. Tieleman, D. P.; Marrink, S.-J.; Berendsen, H. J. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1997, 1331, 235. https://doi.org/10.1016/S0304-4157(97)00008-7
  11. Shahane, G.; Ding, W.; Palaiokostas, M.; Orsi, M. Journal of Molecular Modeling 2019, 25, 76. https://doi.org/10.1007/s00894-019-3964-0
  12. Piggot, T. J.; Pineiro, A. N.; Khalid, S. Journal of Chemical Theory and Computation 2012, 8, 4593. https://doi.org/10.1021/ct3003157
  13. Ollila, O. S.; Vattulainen, I. Molecular Simulations and Biomembranes: from Biophysics to Function 2010, 20, 26. https://doi.org/10.1039/9781849732154-00026
  14. Siani, P.; de Souza, R.; Dias, L.; Itri, R.; Khandelia, H. Biochimica et Biophysica Acta (BBA)-Biomembranes 2016, 1858, 2498. https://doi.org/10.1016/j.bbamem.2016.03.031
  15. Grasso, G.; Muscat, S.; Rebella, M.; Morbiducci, U.; Audenino, A.; Danani, A.; Deriu, M. A. Journal of Biomechanics 2018, 73, 137. https://doi.org/10.1016/j.jbiomech.2018.03.036
  16. Yu, Z.-W.; Quinn, P. J. Biophysical Chemistry 1998, 70, 35. https://doi.org/10.1016/S0301-4622(97)00100-2
  17. Bursing, H.; Ouw, D.; Kundu, S.; Vohringer, P. Physical Chemistry Chemical Physics 2001, 3, 2378. https://doi.org/10.1039/b009301g
  18. Landin, J.; Pascher, I.; Cremer, D. The Journal of Physical Chemistry A 1997, 101, 2996. https://doi.org/10.1021/jp961640k
  19. Jurkiewicz, P.; Sykora, J.; Humpolickova, J.; Hof, M. Journal of Fluorescence 2005, 15, 883. https://doi.org/10.1007/s10895-005-0013-4
  20. Arora, A.; Gupta, C. M. Biochimica et Biophysica Acta (BBA)-Biomembranes 1997, 1324, 47. https://doi.org/10.1016/S0005-2736(97)85698-2
  21. Hauser, H.; Pascher, I.; Sundell, S. Journal of Molecular Biology 1980, 137, 249. https://doi.org/10.1016/0022-2836(80)90315-0
  22. Strenk, L.; Westerman, P.; Doane, J. Biophysical Journal 1985, 48, 765. https://doi.org/10.1016/S0006-3495(85)83834-0
  23. Kolarovic, L.; Fournier, N. C. Analytical Biochemistry 1986, 156, 244. https://doi.org/10.1016/0003-2697(86)90179-X
  24. Saunders, R. D.; Horrocks, L. A. Analytical Biochemistry 1984, 143, 71. https://doi.org/10.1016/0003-2697(84)90559-1
  25. Shum, H. C.; Lee, D.; Yoon, I.; Kodger, T.; Weitz, D. A. Langmuir 2008, 24, 7651. https://doi.org/10.1021/la801833a
  26. Case, D. A.; Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; Cheatham, T., III; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Gilson, M. K.; Gohlke, H.; Goetz, A. W.; Greene, D.; Harris, R.; Homeyer, N.; Huang, Y.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T. S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D. J.; Merz, K. M.; Miao, Y.; Monard, G.; Nguyen, C.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D. R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.; Simmerling, C. L.; Smith, J.; Salomon-Ferrer, R.; Swails, J.; Walker, R. C.; Wang, J.; Wei, H.; Wolf, R. M.; Wu, X.; Xiao, L.; York, D. M.; Kollman, P. A. AMBER 2018, 2018.
  27. Dickson, C. J.; Madej, B. D.; Skjevik, A. A.; Betz, R. M.; Teigen, K.; Gould, I. R.; Walker, R. C. Journal of Chemical Theory and Computation 2014, 10, 865. https://doi.org/10.1021/ct4010307
  28. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. The Journal of Physical Chemistry 1996, 100, 19824. https://doi.org/10.1021/jp961710n
  29. Weiser, J.; Shenkin, P. S.; Still, W. C. Journal of Computational Chemistry 1999, 20, 217. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A