DOI QR코드

DOI QR Code

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem (Department of Civil Engineering, Faculty of Science and Technology, University Abbes Laghrour of Khenchela) ;
  • Hammoud, Farid (Department of Civil Engineering, Faculty of Technology, University Mustapha Ben Boulaid of Batna)
  • Received : 2020.11.05
  • Accepted : 2021.04.27
  • Published : 2021.05.25

Abstract

Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

Keywords

Acknowledgement

The work presented in this paper has been supported by Abbes Laghrour University (Khenchela, Algeria) and Mustapha Ben Boulaid University (Batna, Algeria). Their support is gratefully acknowledged.

References

  1. Al-Bared, M.A.M., Harahap, I.S.H, Marto, A., Alavi Nezhad Khalil Abad, S.V. and Montasir, O.A.A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437, http://doi.org/10.12989/gae.2019.18.4.427.
  2. ASTM D4318-17e1 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Doils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  3. ASTM D6467-13e1 (2013), Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  4. ASTM D6913M-17 (2017), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  5. ASTM D854-14 (2014), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  6. Chen, J., Dai, F., Xu, L., Chen, S., Wang, P., Long, W. and Shen, N. (2014), "Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China", Eng. Geol., 183, 53-64. http://doi.org/10.1016/j.enggeo.2014.10.004.
  7. Coop, M.R., Sorensen, K.K., Bodas Freitas, T. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163, http://doi.org/10.1680/geot.2004.54.3.157.
  8. Duong, N.T., Suzuki, M. and Van Hai, N. (2018), "Rate and acceleration effects on residual strength of kaolin and kaolin-bentonite mixtures in ring shearing", Soils Found., 58(5), 1153-1172. http://doi.org/10.1016/j.sandf.2018.05.011.
  9. Eid, H.T., Al-Nohmi, N.M., Wijewickreme, D. and Amarasinghe, R.S. (2019), "Drained peak and residual interface shear strengths of fine-grained soils for pipeline geotechnics", J. Geotech. Geoenviron. Eng., 145(10), 06019010. http://doi.org/10.1061/(ASCE)gt.1943-5606.0002131.
  10. Eid, H.T., Amarasinghe, R.S., Rabie, K.H. and Wijewickreme, D. (2015), "Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses", Can. Geotech. J., 52(2), 198-210. https://doi.org/10.1139/cgj-2014-0019.
  11. Feligha, M., Hammoud, F., Belachia, M. and Nouaouria, M.S. (2015), "Experimental investigation of frictional behavior between cohesive soils and solid materials using direct shear apparatus", Geotech. Geol. Eng., 34(2), 567-578, http://doi.org/10.1007/s10706-015-9966-5.
  12. Fukuoka, H., Sassa, K., Wang, G. and Sasaki, R. (2006), "Observation of shear zone development in ring-shear apparatus with a transparent shear box", Landslides, 3(3), 239-251. http://doi.org/10.1007/s10346-006-0043-2.
  13. Grelle, G. and Guadagno, F.M. (2010), "Shear mechanisms and viscoplastic effects during impulsive shearing", Geotechnique, 60(2), 91-103. http://doi.org/10.1680/geot.8.p.019.
  14. Han, W.J., Kim, S.Y., Lee, J.S. and Byun, Y.H. (2019), "Friction behavior of controlled low strength material-soil interface", Geomech. Eng., 18(4), 407-415. http://doi.org/10.12989/gae.2019.18.4.407.
  15. Heidemann, M., Bressani, L.A. and Flores, J.A. (2020), "Residual shear strength of a residual soil of granulite", Soils Rocks, 43(1), 31-41. http://doi.org/10.28927/SR.431031.
  16. Hicher, P., Wahyudi, H. and Tessier, D. (1995), "Microstructural analysis of strain localisation in clay", Int. J. Rock Mech. Min. Sci. Geomech., 31(1), A26. http://doi.org/10.1016/0148-9062(95)90196-5.
  17. Hoyos, L.R., Velosa, C.L. and Puppala, A.J. (2011), "A servo/suction-controlled ring shear apparatus for unsaturated soils: Development, performance, and preliminary results", Geotech. Test. J., 34(5), 1-11. http://doi.org/10.1520/GTJ103598.
  18. Jiang, Y., Wang, G. and Kamai, T. (2016), "Fast shear behavior of granular materials in ring-shear tests and implications for rapid landslides", Acta Geotech., 12(3), 645-655. http://doi.org/10.1007/s11440-016-0508-y.
  19. Khosravi, M., Meehan, C., Cacciola, D. and Khosravi, A. (2013), "Effect of fast shearing on the residual shear strengths measured along pre-existing shear surfaces in kaolinite", Proceedings of the Geo-Congress, San Diego, California, U.S.A., March.
  20. Kimura, S., Nakamura, S., Vithana, S.B. and Sakai, K. (2013), "Shearing rate effect on residual strength of landslide soils in the slow rate range", Landslides, 11(6), 969-979, http://doi.org/10.1007/s10346-013-0457-6.
  21. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847, http://doi.org/10.12989/gae.2017.12.5.831.
  22. Lemos, L.J.L. and Vaughan, P.R. (2000), "Clay-interface shear resistance", Geotechnique, 50(1), 55-64. http://doi.org/10.1680/geot.2000.50.1.55.
  23. Li, D., Yin, K., Glade, T. and Chin, L. (2017), "Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the Three Gorges Reservoir", Sci. Rep., 7, 5503, https://doi.org/10.1038/s41598-017-05749-4.
  24. Li, Y.R. and Aydin, A. (2013), "Shear zone structures and stress fluctuations in large ring shear tests", Eng. Geol., 167, 6-13. http://doi.org/10.1016/j.enggeo.2013.10.001.
  25. Li, Y.R., Aydin, A., Xu, Q. and Chen, J. (2012), "Constitutive Behavior of binary mixtures of kaolin and glass beads in direct shear", KSCE J Civ. Eng., 16(7), 1152-1159. http://doi.org/10.1007/s12205-012-1613-6.
  26. Lupini, J.F., Skinner, A.E. and Vaughan, P.R. (1981), "The drained residual strength of cohesive soils", Geotechnique, 31(2), 181-213. http://doi.org/10.1680/geot.1981.31.2.181.
  27. Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H. and Fanttozi, G. (2018) "Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials", J. Australian Ceramic Soc., 55, 555-565. | http://doi.org/10.1007/s41779-018-0262-8.
  28. Mandl, G., de Jong, L.N.J. and Maltha, A. (1977), "Shear zones in granular material-an experimental study of their structure and mechanical genesis", Rock Mech., 9, 95-144. http://doi.org/10.1016/0148-9062(77)90973-1.
  29. Meehan, C.L., Brandon, T.L. and Duncan, J.M. (2007), "Measuring drained residual strengths in the Bromhead ring shear", Geotech. Test. J., 30(6), 466-473. http://doi.org/10.1520/GTJ101017.
  30. Morgenstern, N. and Tchalenko, J.S. (1969), "Microscopic structures in kaolin subjected to direct shear", Geotechnique, 19(3), 426-327. http://doi.org/10.1680/geot.1969.19.3.426.
  31. Sadrekarimi, A. and Olson, S.M. (2010), "Particle damage observed in ring shear tests on sands", Can. Geotech. J., 47(5), 497-515. http://doi.org/10.1139/t09-117.
  32. Srivastava, D.K., Sahu, V. and Raghavendra, H.B. (2020), "Forensic study of slope failure case during heavy rainfall: Suggested preventative and remedial measures", Geotech. Geol. Eng., 38, 3697-3707. https://doi.org/10.1007/s10706-020-01247-z.
  33. Suzuki, M., Van Hai, N. and Yamamoto, T. (2017), "Ring shear characteristics of discontinuous plane", Soils Found., 57(1), 1-22, https://doi.org/10.1016/j.sandf.2017.01.001.
  34. Takizawa S., Kamai T. and Matsukura Y. (2005), "Fluid pathways in the shearing zones of kaolin subjected to direct shear tests", Eng. Geol., 78, 135-142, http://doi.org/10.1016/j.enggeo.2004.12.002.
  35. Thakur, V. (2007), "Strain localization in sensitive soft clays", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
  36. Torabi, A., Braathen, A., Cuisiat, F. and Fossen, H. (2007), "Shear zones in porous sand: Insights from ring-shear experiments and naturally deformed sandstones", Tectonophysics, 437(1-4), 37-50. http://doi.org/10.1016/j.tecto.2007.02.018.
  37. Tsubakihara, Y., Kishida, H. and Nishiyima, T. (1993), "Friction between cohesive soils and steel", Soils Found., 33(2), 145-146. http://doi.org/10.1016/0148-9062(94)92910-6.
  38. Wafid Agung, M., Sassa, K., Fukuoka, H. and Wang, G. (2004), "Evolution of shear-zone structure in undrained ring-shear tests", Landslides, 1, 101-112. https://doi.org/10.1007/s10346-004-0001-9.
  39. Wan, Y. and Kwong, J. (2002), "Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide", Eng. Geol., 65(4), 293-303. http://doi.org/10.1016/s0013-7952(01)00139-9.
  40. Wang, F., Sassa, K. and Wang, G. (2002), "Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in FukushimaPrefecture", Eng. Geol., 63(1-2), 169-185. http://doi.org/10.1016/s0013-7952(01)00080-1.
  41. Wang, L., Han, J., Yin, X. and Songyang, L. (2020), "Effect of moisture content and shearing speed on shear zone structure in fine-grained soils at large displacement", Arab. J. Geosci., 13(6), 1-11. https://doi.org/10.1007/s12517-020-5237-8.
  42. Wei, H., Zhao, T., He, J., Meng, Q. and Wang, X. (2018), "Evolution of particle breakage for calcareous sands during ring shear tests", Int. J. Geomech., 18(2), 04017153, http://doi.org/10.1061/(ASCE)gm.1943-5622.0001073.
  43. Wu, X. and Yang, J. (2017), "Tests of the interface between structures and filling soil of mountain area airport", Geomech. Eng., 12(3), 399-415. http://doi.org/10.12989/gae.2017.12.3.399.
  44. Xu, C., Wang, X., Lu, X., Dai, F. and Jiao, S. (2018), "Experimental study of residual strength and the index of shear strength characteristics of clay soil", Eng. Geol., 233, 183-190. http://doi.org/10.1016/j.enggeo.2017.12.004.