Acknowledgement
The work presented in this paper has been supported by Abbes Laghrour University (Khenchela, Algeria) and Mustapha Ben Boulaid University (Batna, Algeria). Their support is gratefully acknowledged.
References
- Al-Bared, M.A.M., Harahap, I.S.H, Marto, A., Alavi Nezhad Khalil Abad, S.V. and Montasir, O.A.A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437, http://doi.org/10.12989/gae.2019.18.4.427.
- ASTM D4318-17e1 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Doils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D6467-13e1 (2013), Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D6913M-17 (2017), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D854-14 (2014), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Chen, J., Dai, F., Xu, L., Chen, S., Wang, P., Long, W. and Shen, N. (2014), "Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China", Eng. Geol., 183, 53-64. http://doi.org/10.1016/j.enggeo.2014.10.004.
- Coop, M.R., Sorensen, K.K., Bodas Freitas, T. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163, http://doi.org/10.1680/geot.2004.54.3.157.
- Duong, N.T., Suzuki, M. and Van Hai, N. (2018), "Rate and acceleration effects on residual strength of kaolin and kaolin-bentonite mixtures in ring shearing", Soils Found., 58(5), 1153-1172. http://doi.org/10.1016/j.sandf.2018.05.011.
- Eid, H.T., Al-Nohmi, N.M., Wijewickreme, D. and Amarasinghe, R.S. (2019), "Drained peak and residual interface shear strengths of fine-grained soils for pipeline geotechnics", J. Geotech. Geoenviron. Eng., 145(10), 06019010. http://doi.org/10.1061/(ASCE)gt.1943-5606.0002131.
- Eid, H.T., Amarasinghe, R.S., Rabie, K.H. and Wijewickreme, D. (2015), "Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses", Can. Geotech. J., 52(2), 198-210. https://doi.org/10.1139/cgj-2014-0019.
- Feligha, M., Hammoud, F., Belachia, M. and Nouaouria, M.S. (2015), "Experimental investigation of frictional behavior between cohesive soils and solid materials using direct shear apparatus", Geotech. Geol. Eng., 34(2), 567-578, http://doi.org/10.1007/s10706-015-9966-5.
- Fukuoka, H., Sassa, K., Wang, G. and Sasaki, R. (2006), "Observation of shear zone development in ring-shear apparatus with a transparent shear box", Landslides, 3(3), 239-251. http://doi.org/10.1007/s10346-006-0043-2.
- Grelle, G. and Guadagno, F.M. (2010), "Shear mechanisms and viscoplastic effects during impulsive shearing", Geotechnique, 60(2), 91-103. http://doi.org/10.1680/geot.8.p.019.
- Han, W.J., Kim, S.Y., Lee, J.S. and Byun, Y.H. (2019), "Friction behavior of controlled low strength material-soil interface", Geomech. Eng., 18(4), 407-415. http://doi.org/10.12989/gae.2019.18.4.407.
- Heidemann, M., Bressani, L.A. and Flores, J.A. (2020), "Residual shear strength of a residual soil of granulite", Soils Rocks, 43(1), 31-41. http://doi.org/10.28927/SR.431031.
- Hicher, P., Wahyudi, H. and Tessier, D. (1995), "Microstructural analysis of strain localisation in clay", Int. J. Rock Mech. Min. Sci. Geomech., 31(1), A26. http://doi.org/10.1016/0148-9062(95)90196-5.
- Hoyos, L.R., Velosa, C.L. and Puppala, A.J. (2011), "A servo/suction-controlled ring shear apparatus for unsaturated soils: Development, performance, and preliminary results", Geotech. Test. J., 34(5), 1-11. http://doi.org/10.1520/GTJ103598.
- Jiang, Y., Wang, G. and Kamai, T. (2016), "Fast shear behavior of granular materials in ring-shear tests and implications for rapid landslides", Acta Geotech., 12(3), 645-655. http://doi.org/10.1007/s11440-016-0508-y.
- Khosravi, M., Meehan, C., Cacciola, D. and Khosravi, A. (2013), "Effect of fast shearing on the residual shear strengths measured along pre-existing shear surfaces in kaolinite", Proceedings of the Geo-Congress, San Diego, California, U.S.A., March.
- Kimura, S., Nakamura, S., Vithana, S.B. and Sakai, K. (2013), "Shearing rate effect on residual strength of landslide soils in the slow rate range", Landslides, 11(6), 969-979, http://doi.org/10.1007/s10346-013-0457-6.
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847, http://doi.org/10.12989/gae.2017.12.5.831.
- Lemos, L.J.L. and Vaughan, P.R. (2000), "Clay-interface shear resistance", Geotechnique, 50(1), 55-64. http://doi.org/10.1680/geot.2000.50.1.55.
- Li, D., Yin, K., Glade, T. and Chin, L. (2017), "Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the Three Gorges Reservoir", Sci. Rep., 7, 5503, https://doi.org/10.1038/s41598-017-05749-4.
- Li, Y.R. and Aydin, A. (2013), "Shear zone structures and stress fluctuations in large ring shear tests", Eng. Geol., 167, 6-13. http://doi.org/10.1016/j.enggeo.2013.10.001.
- Li, Y.R., Aydin, A., Xu, Q. and Chen, J. (2012), "Constitutive Behavior of binary mixtures of kaolin and glass beads in direct shear", KSCE J Civ. Eng., 16(7), 1152-1159. http://doi.org/10.1007/s12205-012-1613-6.
- Lupini, J.F., Skinner, A.E. and Vaughan, P.R. (1981), "The drained residual strength of cohesive soils", Geotechnique, 31(2), 181-213. http://doi.org/10.1680/geot.1981.31.2.181.
- Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H. and Fanttozi, G. (2018) "Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials", J. Australian Ceramic Soc., 55, 555-565. | http://doi.org/10.1007/s41779-018-0262-8.
- Mandl, G., de Jong, L.N.J. and Maltha, A. (1977), "Shear zones in granular material-an experimental study of their structure and mechanical genesis", Rock Mech., 9, 95-144. http://doi.org/10.1016/0148-9062(77)90973-1.
- Meehan, C.L., Brandon, T.L. and Duncan, J.M. (2007), "Measuring drained residual strengths in the Bromhead ring shear", Geotech. Test. J., 30(6), 466-473. http://doi.org/10.1520/GTJ101017.
- Morgenstern, N. and Tchalenko, J.S. (1969), "Microscopic structures in kaolin subjected to direct shear", Geotechnique, 19(3), 426-327. http://doi.org/10.1680/geot.1969.19.3.426.
- Sadrekarimi, A. and Olson, S.M. (2010), "Particle damage observed in ring shear tests on sands", Can. Geotech. J., 47(5), 497-515. http://doi.org/10.1139/t09-117.
- Srivastava, D.K., Sahu, V. and Raghavendra, H.B. (2020), "Forensic study of slope failure case during heavy rainfall: Suggested preventative and remedial measures", Geotech. Geol. Eng., 38, 3697-3707. https://doi.org/10.1007/s10706-020-01247-z.
- Suzuki, M., Van Hai, N. and Yamamoto, T. (2017), "Ring shear characteristics of discontinuous plane", Soils Found., 57(1), 1-22, https://doi.org/10.1016/j.sandf.2017.01.001.
- Takizawa S., Kamai T. and Matsukura Y. (2005), "Fluid pathways in the shearing zones of kaolin subjected to direct shear tests", Eng. Geol., 78, 135-142, http://doi.org/10.1016/j.enggeo.2004.12.002.
- Thakur, V. (2007), "Strain localization in sensitive soft clays", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
- Torabi, A., Braathen, A., Cuisiat, F. and Fossen, H. (2007), "Shear zones in porous sand: Insights from ring-shear experiments and naturally deformed sandstones", Tectonophysics, 437(1-4), 37-50. http://doi.org/10.1016/j.tecto.2007.02.018.
- Tsubakihara, Y., Kishida, H. and Nishiyima, T. (1993), "Friction between cohesive soils and steel", Soils Found., 33(2), 145-146. http://doi.org/10.1016/0148-9062(94)92910-6.
- Wafid Agung, M., Sassa, K., Fukuoka, H. and Wang, G. (2004), "Evolution of shear-zone structure in undrained ring-shear tests", Landslides, 1, 101-112. https://doi.org/10.1007/s10346-004-0001-9.
- Wan, Y. and Kwong, J. (2002), "Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide", Eng. Geol., 65(4), 293-303. http://doi.org/10.1016/s0013-7952(01)00139-9.
- Wang, F., Sassa, K. and Wang, G. (2002), "Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in FukushimaPrefecture", Eng. Geol., 63(1-2), 169-185. http://doi.org/10.1016/s0013-7952(01)00080-1.
- Wang, L., Han, J., Yin, X. and Songyang, L. (2020), "Effect of moisture content and shearing speed on shear zone structure in fine-grained soils at large displacement", Arab. J. Geosci., 13(6), 1-11. https://doi.org/10.1007/s12517-020-5237-8.
- Wei, H., Zhao, T., He, J., Meng, Q. and Wang, X. (2018), "Evolution of particle breakage for calcareous sands during ring shear tests", Int. J. Geomech., 18(2), 04017153, http://doi.org/10.1061/(ASCE)gm.1943-5622.0001073.
- Wu, X. and Yang, J. (2017), "Tests of the interface between structures and filling soil of mountain area airport", Geomech. Eng., 12(3), 399-415. http://doi.org/10.12989/gae.2017.12.3.399.
- Xu, C., Wang, X., Lu, X., Dai, F. and Jiao, S. (2018), "Experimental study of residual strength and the index of shear strength characteristics of clay soil", Eng. Geol., 233, 183-190. http://doi.org/10.1016/j.enggeo.2017.12.004.