References
- Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput-Aid. Civ. Infrastruct. Eng., 16, 126-142. https://doi.org/10.1111/0885-9507.00219.
- Aggistalis, G., Alivizatos, A., Stamoulis, D. and Stournaras, G. (1996), "Correlating uniaxial compressive strength with Schmidt hardness, point load index, Young's modulus, and mineralogy of gabbros and basalts (Northern Greece)", B. Int. Assoc. Eng. Geol., 54(1), 3-11. https://doi.org/10.1007/BF02600693.
- Aladejare, A.E. (2020), "Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests", J. Rock Mech. Geotech. Eng., 12(2), 256-268. https://doi.org/10.1016/j.jrmge.2019.08.001.
- Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Proc. Struct. Integrit., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167.
- Apostolopoulou, M., Douvika, M.G., Kanellopoulos, I.N., Moropoulou, A. and Asteris, P.G. (2018), "Prediction of compressive strength of mortars using artificial neural networks", Proceedings of the 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
- Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 1-32. https://doi.org/10.1007/s00521-020-05244-4.
- Armaghani, D.J., Amin, M.F.M., Yagiz, S., Faradonbeh, R.S. and Abdullah, R.A. (2016c), "Prediction of the uniaxial compressive strength of sandstone using various modeling techniques", Int. J. Rock Mech. Min. Sci., 85, 174-186. https://doi.org/10.1016/j.ijrmms.2016.03.018.
- Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
- Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, Ch., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Proc. Struct. Integrit. 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Armaghani, D.J., Mohamad, E.T., Hajihassani, M., Yagiz, S. and Motaghedi, H. (2016a), "Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances", Eng. Comput., 32(2), 189-206. https://doi.org/10.1007/s00366-015-0410-5.
- Armaghani, D.J., Mohamad, E.T., Momeni, E., Monjezi, M. and Narayanasamy, M.S. (2016b), "Prediction of the strength and elasticity modulus of granite through an expert artificial neural network", Arab. J. Geosci., 9(1), 48. https://doi.org/10.1007/s12517-015-2057-3.
- Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheur. Comput. Appl., 1(1), 1-18. http://doi.org/10.12989/mca.2020.1.1.001.
- Asteris, P. G., Douvika, M. G., Karamani, C. A., Skentou, A. D., Chlichlia, K., Cavaleri, L., Daras, T., Armaghani, D.J. and Zaoutis, T.E. (2020), "A novel heuristic algorithm for the modeling and Risk Assessment of the COVID-19 pandemic phenomenon", Comput. Model. Eng. Sci., 125(2), 815-828. https://doi.org/10.32604/cmes.2020.013280.
- Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Appl., 1-16. https://doi.org/10.1007/s00521-017-3007-7.
- Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive Ssrength using artificial neural networks", Neural Comput. Appl., 1-20. https://doi.org/10.1007/s00521-019-04663-2.
- Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, June.
- Asteris, P.G. and Plevris, V. (2016), "Anisotropic masonry failure criterion using artificial neural networks", Neural Comput. Appl., 1-23. https://doi.org/10.1007/s00521-016-2181-3.
- Asteris, P.G., Apostolopoulou, M., Armaghani, D.J., Cavaleri, L., Chountalas, A.T., Guney, D., Hajihassani, M., Hasanipanah, M., Khandelwal, M., Karamani, C., Koopialipoor, M., Kotsonis, E., Le, T.T., Lourenco, P.B., Ly, H.B., Moropoulou, A., Nguyen, H., Pham, B.T., Samui, P. and Zhou, J. (2020), "On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength", Metaheur. Comput. Appl., 1(1), 63-99. http://doi.org/10.12989/mca.2020.1.1.063.
- Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feed-forward neural network prediction of the mechanical properties of sandcrete materials", Sensors, 17(6), 1344. https://doi.org/10.3390/s17061344.
- ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Aydin, A. and Basu, A. (2005), "The Schmidt hammer in rock material characterization", Eng. Geol., 81(1), 1-14. https://doi.org/10.1016/j.enggeo.2005.06.006.
- Barham, W.S., Rababah, S.R., Aldeeky, H.H. and Al Hattamleh, O.H. (2020), "Mechanical and physical based artificial neural network models for the prediction of the unconfined compressive strength of rock", Geotech. Geol. Eng., 38(5), 4779-4792. https://doi.org/10.1007/s10706-020-01327-0.
- Bartlett, P.L. (1998), "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network", IEEE T. Inform. Theor., 44(2), 525-536. https://doi.org/10.1109/18.661502.
- Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6.
- Bozorgzadeh, N., Harrison, J.P. and Escobar, M.D. (2019), "Hierarchical Bayesian modelling of geotechnical data: Application to rock strength", Geotechnique, 69(12), 1056-1070. https://doi.org/10.1680/jgeot.17.P.282.
- Cavaleri, L., Asteris, P.G., Psyllaki, P.P., Douvika, M.G., Skentou, A.D. and Vaxevanidis, N.M. (2019), "Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks", Appl. Sci., 9(14), 2788. https://doi.org/10.3390/app9142788.
- Cavaleri, L., Chatzarakis, G.E., Di Trapani, F.D., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. http://doi.org/10.12989/amr.2017.6.2.169.
- Ceryan, N. and Samui, P. (2020), "Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree", Arab. J. Geosci., 13(7), 1-18. https://doi.org/10.1007/s12517-020-5273-4.
- Ceryan, N., Okkan, U. and Kesimal, A. (2013), "Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks", Environ. Earth Sci., 68(3), 807-819. https://doi.org/10.1007/s12665-012-1783-z.
- Chaki, S., Takarli, M. and Agbodjan, W.P. (2008), "Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions", Construct. Build. Mater., 22(7), 1456-1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002.
- Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall using two hybrid intelligent models", Appl. Sci., 9, 1042. https://doi.org/10.3390/app9061042.
- Ching, J., Li, K.H., Phoon, K.K. and Weng, M.C. (2018), "Generic transformation models for some intact rock properties", Can. Geotech. J., 55(12), 1702-1741. https://doi.org/10.1139/cgj-2017-0537
- Cobanoglu, I. and Celik, S.B. (2008), "Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity", B. Eng. Geol. Environ., 67(4), 491-498. https://doi.org/10.1007/s10064-008-0158-x.
- Das, S.K., Samui, P. and Sabat, A.K. (2011), "Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil", Geotech. Geol. Eng., 29(3), 329-342. https://doi.org/10.1007/s10706-010-9379-4.
- Dehghan, S., Sattari, G.H., Chelgani, S.C. and Aliabadi, M.A. (2010), "Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks", Min. Sci. Technol., 20(1), 41-46. https://doi.org/10.1016/S1674-5264(09)60158-7.
- Diamantis, K., Bellas, S., Migiros, G. and Gartzos, E. (2011), "Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece", Geotech. Geol. Eng., 29(6), 1049. https://doi.org/10.1007/s10706-011-9436-7.
- Diamantis, K., Gartzos, E. and Migiros, G. (2009), "Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations", Eng. Geol., 108(3-4), 199-207. https://doi.org/10.1016/j.enggeo.2009.07.002.
- Ebdali, M., Khorasani, E. and Salehin, S. (2020), "A comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertine", Innov. Infrastruct. Solutions, 5(3), 1-14. https://doi.org/10.1007/s41062-020-00346-3.
- Ferentinou, M. and Fakir, M. (2017), "An ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and igneous rocks in eastern KwaZulu-Natal", Procedia Eng., 191, 1117-1125. https://doi.org/10.1016/j.proeng.2017.05.286.
- Franklin, J.A. and Dusseault, M.B (1991), Rock Engineering Applications, McGraw-Hill, New York, U.S.A.
- Gavriilaki, E., Asteris, P.G., Touloumenidou, T., Koravou, E.E., Koutra, M., Papayanni, P.G., Karali, V., Papalexandri, A., Varelas, C., Chatzopoulou, F., Chatzidimitriou, M. and Anagnostopoulos, A. (2021), "Genetic justification of severe COVID-19 using a rigorous algorithm", Clin. Immun., 226, 108726. https://doi.org/10.1016/j.clim.2021.108726
- Goudie, A.S. (2006), "The Schmidt hammer in geomorphological research", Progress Phys. Geography, 30(6), 703. https://doi.org/10.1177/0309133306071954.
- Hawkins, A.B. (1998), "Aspects of rock strength", B. Eng. Geol. Environ., 57(1), 17-30. https://doi.org/10.1007/s100640050017.
- Heidari, M., Mohseni, H. and Jalali, S.H. (2018), "Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models", Geotech. Geol. Eng., 36(1), 401-412. https://doi.org/10.1007/s10706-017-0334-5.
- Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Geoenviron. Eng., 106, 15715. https://doi.org/10.1061/AJGEB6.0001029.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Hoek, E.(1983), "Strength of jointed rock masses", Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187.
- Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proc NARMS-Tac., 1(1), 267-273.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Netw., 2, 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- ISRM (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006, in Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Turkish National Group; Ankara, Turkey.
- Kahraman, S. (2001), "Evaluation of simple methods for assessing the uniaxial compressive strength of rock", Int. J. Rock Mech. Min. Sci., 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9.
- Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Expert Syst., 1(4), 111-122.
- Kashani, A.R., Gandomi, M., Camp, C.V., Rostamian, M. and Gandomi, A.H. (2020), "Metaheuristics in civil engineering: A review", Metaheur. Comput. Appl., 1(1), 19-42. http://doi.org/10.12989/mca.2020.1.1.019
- Kechagias, J., Tsiolikas, A., Asteris, P. and Vaxevanidis, N. (2018), "Optimizing ANN performance using DOE: Application on turning of a titanium alloy", Proceedings of the 22nd International Conference on Innovative Manufacturing Engineering and Energy, Chisinau, Moldova, May.
- Kelsall, P.C., Watters, R.J. and Franzone, G. (1986), "Engineering characterization of fissured, weathered dolerite and vesicular basalt", Proceedings of the 27th U.S. Symposium on Rock Mechanics, Tuscaloosa, Alabama, U.S.A., June.
- Khandelwal, M. (2013), "Correlating P-wave velocity with the physico-mechanical properties of different rocks", Pure Appl. Geophys., 170(4), 507-514. https://doi.org/10.1007/s00024-012-0556-7.
- Khandelwal, M. and Singh, T.N. (2009), "Correlating static properties of coal measures rocks with P-wave velocity", Int. J. Coal Geol., 79(1-2), 55-60. https://doi.org/10.1016/j.coal.2009.01.004.
- Khandelwal, M., Armaghani, D.J., Faradonbeh, R.S., Ranjith, P.G. and Ghoraba, S. (2016), "A new model based on gene expression programming to estimate air flow in a single rock joint", Environ. Earth. Sci., 75(9), 739-786. https://doi.org/10.1007/s12665-016-5524-6.
- Kilic, A. and Teymen, A. (2008), "Determination of mechanical properties of rocks using simple methods", B. Eng. Geol. Environ., 67(2), 237. https://doi.org/10.1007/s10064-008-0128-3.
- Li, D., Armaghani, D.J., Zhou, J., Lai, S.H. and Hasanipanah, M. (2020), "A GMDH predictive model to predict rock material strength using three non-destructive tests", J. Nondestruct. Eval., 39(4), 1-14. https://doi.org/10.1007/s10921-020-00725-x.
- Liang, M., Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J. and Ghoraba, S. (2016), "Rock strength assessment based on regression tree technique", Eng. Comput., 32(2), 343-354. https://doi.org/10.1007/s00366-015-0429-7.
- Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A. and Singh, T.N. (2016), "Prediction of compressive strength and elastic modulus of carbonate rocks", Measurement, 88, 202-213. https://doi.org/10.1016/j.measurement.2016.03.050.
- Marinos, P. and Hoek, E. (2000), "GSI: A geologically friendly tool for rock mass strength estimation", Proceedings of the ISRM International Symposium, Melbourne, Australia, November.
- Minaeian, B. and Ahangari, K. (2013), "Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method", Arab. J. Geosci., 6(6), 1925-1931. https://doi.org/10.1007/s12517-011-0460-y.
- Mishra, D.A. and Basu, A. (2013), "Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system", Eng. Geol., 160, 54-68. https://doi.org/10.1016/j.enggeo.2013.04.004.
- Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075.
- Moradian, Z.A. and Behnia, M. (2009), "Predicting the uniaxial compressive strength and static Young's modulus of intact sedimentary rocks using the ultrasonic test", Int. J. Geomech., 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14).
- Moussas, V.M. and Diamantis, K. (2021), "Predicting uniaxial compressive strength of serpentinites through physical, dynamic and mechanical properties using neural networks", J. Rock Mech. Geotech. Eng., 13(1), 167-175. https://doi.org/10.1016/j.jrmge.2020.10.001.
- Ng, I.T., Yuen, K.V. and Lau, C.H. (2015), "Predictive model for uniaxial compressive strength for Grade III granitic rocks from Macao", Eng. Geol., 199, 28-37. https://doi.org/10.1016/j.enggeo.2015.10.008.
- Nikoo, M., Hadzima-Nyarko, M., KarloNyarko, E. and Nikoo, M. (2018), "Determining the natural frequency of cantilever beams using ANN and heuristic search", Appl. Artif. Intell., 32(3), 309-334. https://doi.org/10.1080/08839514.2018.1448003.
- Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E.K. and Nikoo, M. (2016), "Flood-routing modeling with neural network optimized by social-based algorithm", Nat. Hazards, 82(1), 1-24. https://doi.org/10.1007/s11069-016-2176-5.
- Nikoo, M., Sadowski, L., Khademi, F. and Nikoo, M. (2017), "Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map", Appl. Comput. Intell. Soft Comput., 1-10. https://doi.org/10.1155/2017/3508189.
- Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", Proceedings of the 5th International Conference of Engineering against failure, Chios, Greece, June.
- Rahimi, I., Gandomi, A.H., Asteris, P.G. and Chen, F. (2021), "Analysis and prediction of COVID-19 using SIR, SEIQR, and machine learning models: Australia, Italy, and UK Cases", Information, 12(3), 109. https://doi.org/10.3390/info12030109.
- Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
- Samui, P. and Kothari, D.P. (2011), "Utilization of a least square support vector machine (LSSVM) for slope stability analysis", Scientia Iranica, 18(1), 53-58. https://doi.org/10.1016/j.scient.2011.03.007.
- Singh, T.N., Kainthola, A. and Venkatesh, A. (2012), "Correlation between point load index and uniaxial compressive strength for different rock types", Rock Mech. Rock Eng., 45(2), 259-264. https://doi.org/10.1007/s00603-011-0192-z.
- Tandon, R.S. and Gupta, V. (2015), "Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity", B. Eng. Geol. Environ., 74(2), 521-533. https://doi.org/10.1007/s10064-014-0629-1.
- Teymen, A. and Menguc, E.C. (2020), "Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks", Int. J. Min. Sci. Technol., 30(6), 785-797. https://doi.org/10.1016/j.ijmst.2020.06.008.
- Thuro, K., Plinninger, R.J., Zah, S. and Schutz, S. (2001), "Scale effects in rock strength properties. Part 1: Unconfined compressive test and Brazilian test", Proceedings of the ISRM Regional Symposium, EUROCK 2001, Espoo, Finland, June.
- Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3-4), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.
- Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3-4), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.
- Tugrul, A. (2004), "The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey", Eng. Geol., 75(3-4), 215-227. https://doi.org/10.1016/j.enggeo.2004.05.008.
- Tugrul, A. and Zarif, I.H. (1999), "Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey", Eng. Geol., 51(4), 303-317. https://doi.org/10.1016/S0013-7952(98)00071-4.
- Vasconcelos, G., Lourenco, P.B., Alves, C.A. and Pamplona, J. (2007), "Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness", Proceedings of the North American Masonry Conference, St. Louis, Missouri, October.
- Vasconcelos, G., Lourenco, P.B., Alves, C.A.S. and Pamplona, J. (2008), "Ultrasonic evaluation of the physical and mechanical properties of granites", Ultrasonics, 48(5), 453-466. https://doi.org/10.1016/j.ultras.2008.03.008.
- Wang, M., Wan, W. and Zhao, Y. (2020), "Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model", Comptes Rendus Mecanique, 348(1), 3-32. https://doi.org/10.5802/crmeca.3.
- Wu, H.H. and Wu, S. (2009), "Various proofs of the Cauchy-Schwarz Inequality", Octogon Math. Magazine, 17(1), 221-229.
- Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J. and Tahir, M. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9(18), 3715. https://doi.org/10.3390/app9183715.
- Yagiz, S., Sezer, E.A. and Gokceoglu, C. (2012), "Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks", Int. J. Numer. Anal. Met., 36(14), 1636-1650. https://doi.org/10.1002/nag.1066.
- Yasar, E. and Erdogan, Y. (2004a), "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks", Int. J. Rock Mech. Min. Sci., 41(5), 871-875. https://doi.org/10.1016/j.ijrmms.2004.01.012.
- Yasar, E. and Erdogan, Y. (2004b), "Estimation of rock physicomechanical properties using hardness methods", Eng. Geol., 71(3-4), 281-288. https://doi.org/10.1016/S0013-7952(03)00141-8.
- Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, E.A. (2013), "Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances", Int. J. Rock Mech. Min. Sci., 62, 113-122. https://doi.org/10.1016/j.ijrmms.2013.05.005.
- Yilmaz, I. and Yuksek, A.G. (2008), "An example of artificial neural network (ANN) application for indirect estimation of rock parameters", Rock Mech. Rock Eng., 41(5), 781-795. https://doi.org/10.1007/s00603-007-0138-7.
- Yilmaz, I. and Yuksek, G. (2009), "Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models", Int. J. Rock Mech. Min. Sci., 46(4), 803-810. https://doi.org/10.1016/j.ijrmms.2008.09.002.
- Yurdakul, M. and Akdas, H. (2013), "Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters", Constr. Build. Mater., 47, 1010-1019. https://doi.org/10.1016/j.conbuildmat.2013.05.109.
- Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K. and Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced Sand", Appl. Sci., 2(11), 908. https://doi.org/10.3390/app11030908.
- Zhang, H., Nguyen, H., Bui, X.N., Pradhan, B., Asteris, P.G., Costache, R. and Aryal, J.A. (2021), "A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01272-9.
- Zhao, J., Nguyen, H., Nguyen-Thoi, T., Asteris, P.G. and Zhou, J. (2021), "Improved Levenberg-Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01267-6.