Acknowledgement
The supports for this work, provided by the National Natural Science Foundation of China (NSFC) under Grant 51779138, are gratefully acknowledged.
References
- Alderson, K.L. and Coenen, V.L. (2008), "The low velocity impact response of auxetic carbon fibre laminates", Phys. Stat. Sol. B, 245, 489-496. https://doi.org/10.1002/pssb.200777701.
- Ansari, R., Torabi, J. and Hassani, R. (2019), "Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates", Comput. Math. Appl., 77, 1294-1311. https://doi.org/10.1016/j.camwa.2018.11.009
- Azoti, W.L., Koutsawa, Y., Bonfoh, N., Lipinski, P. and Belouettar, S. (2013), "Analytical modeling of multilayered dynamic sandwich composites embedded with auxetic layers", Eng. Struct., 57, 248-253. https://doi.org/10.1016/j.engstruct.2013.09.030
- Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load", J. Thermal Stress., 41, 847-865. https://doi.org/ 10.1080/01495739.2017.1421054.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
- Bayat, M.R. and Mashhadi, M.M. (2018), "Low-velocity impact response of sandwich cylindrical panels with nanotube-reinforced and metal face sheet in thermal environment", Aeronaut. J., 122, 1943-1966. https://doi.org/10.1017/aer.2018.104.
- Chen, X. and Feng, Z. (2017), "Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to inplane excitation", Mech. Res. Commun., 85, 45-52. https://doi.org/10.1016/j.mechrescom.2017.07.013.
- Clarke, J.F., Duckett, R.A., Hine, P.J., Hutchinson, I.J. and Ward, I.M. (1994), "Negative Poisson's ratios in angle-ply laminates: theory and experiment", Compos., 25, 863-868. https://doi.org/10.1016/0010-4361(94)90027-2.
- Cong, P.H., Khanh, N.D., Khoa, N.D. and Duc, N.D. (2018), "New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT", Compos. Struct., 185, 455-465. https://doi.org/10.1016/j.compstruct.2017.11.047.
- Dadkhah, M., Saboori, A. and Fino, P. (2019), "An overview of the recent developments in metal matrix nanocomposites reinforced by graphene", Materials, 12, 2823. https://doi.org/10.3390/ma12172823.
- Dehrouyeh-Semnani, A.M. and Jafarpour, S. (2019), "Nonlinear thermal stability of temperature-dependent metal matrix composite shallow arches with functionally graded fiber reinforcements", Int. J. Mech. Sci., 161, 105075. https://doi.org/10.1016/ j.ijmecsci.2019.105075.
- Duc, N.D., Kim, S.-E., Tuan, N.D., Tran, P. and Khoa, N.D. (2017), "New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer", Aero. Sci. Tech., 70, 396-404. https://doi.org/10.1016/j.ast.2017.08.023.
- Duc, N.D. and Cong, P.H. (2018), "Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycombs", J. Sandw. Struct. Mater., 20, 692-717. https://doi.org/10.1177/1099636216674729.
- Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., Int. J., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
- Evans, K.E., Donoghue, J.P. and Alderson, K.L. (2004), "The design, matching and manufacture of auxetic carbon fibre laminates", J. Compos. Mater., 38, 95-105. https://doi.org/10.1177/0021998304038645.
- Fan, Y. and Wang, Y. (2021), "The effect of negative Poisson's ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam", Int. J. Mech. Mater. Des., 17(1), 153-169. https://doi.org/ 10.1007/s10999-020-09521-x.
- Fan, Y., Xiang, Y. and Shen, H.-S. (2019), "Temperature-dependent negative Poisson's ratio of monolayer graphene: Prediction from molecular dynamics simulations", Nanotechnol. Rev., 8, 415-421. https://doi.org/10.1515/ntrev-2019-0037.
- Fan, Y., Xiang, Y. and Shen, H.-S. (2020), "Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative Poisson's ratios", Research, 2020, 5618021. https://doi.org/10.34133/2020/5618021l.
- Fattahi, A.M. and Sahmani, S. (2017), "Size dependency in the axial postbuckling behavior of nanopanels made of functionally graded material considering surface elasticity", Arab. J. Sci. Eng., 42, 4617-4633. https://doi.org/10.1007/s13369-017-2600-5.
- Feldman, E. (1996), "The effect of temperature-dependent material properties on elasto-viscoplastic buckling behaviour of non-uniformly heated MMC plates", Compos. Struct., 35, 65-74. https://doi.org/10.1016/0263-8223(96)00024-4.
- Feldman, E. and Aboudi, J. (1995), "Thermal postbuckling of metal matrix laminated plates", J. Thermal Stress., 18, 197-218. https://doi.org/10.1080/01495739508946299.
- Harkati, E.H., Bezazi, A., Scarpa, F., Alderson, K. and Alderson, A. (2007), "Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson's ratio in composite laminates", Phys. Status Solidi B, 244, 883-892. https://doi.org/10.1002/ pssb.200572707.
- Herakovich, C.T. (1984), "Composite laminates with Negative through-the-thickness Poisson's ratios", J. Compos. Mater., 18, 447-455. https://doi.org/10.1177/ 002199838401800504.
- Hine, P.J., Duckett, R.A. and Ward, I.M. (1997), "Negative Poisson's ratios in angle-ply laminates", J. Mater. Sci. Lett., 16, 541-544. https://doi.org/10.1023/A:1018505503088.
- Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J. and Zhou, L. (2016), "Graphene-reinforced metal matrix nanocomposites-A review", Mater. Sci. Technol., 32, 930-953. https://doi.org/10.1080/02670836.2015.1104018.
- Huang, C. and Chen, L. (2016), "Negative Poisson's ratio in modern functional materials", Adv. Mater., 28, 8079-8096. https://doi.org/10.1002/adma.201601363.
- Huang, X.-H., Yang, J., Bai, L., Wang, X. and Ren, X. (2020a), "Theoretical solutions for auxetic laminated beam subjected to a sudden load", Structures, 28, 57-68. https://doi.org/10.1016/j.istruc.2020.08.030.
- Huang, X.-H., Yang, J., Wang, X. and Azim, I. (2020b), "Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load", Eng. with Comput. https://doi.org/10.1007/s00366-020-01106-8.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/ anr.2019.7.1.051.
- Kiani, Y. (2018), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates", Thin-Walled Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024.
- Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086.
- Lakes, R.S. (2017), "Negative-Poisson's-ratio materials: Auxetic solids", Annu. Rev. Mater. Res., 47, 63-81. https://doi.org/10.1146/annurev-matsci-070616-124118.
- Lal, A., Singh, B.N. and Kale, S., (2012), "Stochastic thermal post-buckling response of laminated composite cylindrical shell panel with system randomness", Int. J. Appl. Mech., 4, 1250009. https://doi.org/10.1142/S1758825112001385.
- Lee, J.J., Oh, I.-K., Lee, I. and Yeom, C.H. (2002), "Thermal post-buckling behavior of patched laminated panels under uniform and non-uniform temperature distributions", Compos. Struct., 55, 137-145. https://doi.org/10.1016/S0263-8223(01)00139-8.
- Li, C., Shen, H.-S. and Wang, H. (2019a), "Thermal post-buckling of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Mech. Sci., 152, 289-297. https://doi.org/10.1016/j.ijmecsci.2019.01.002.
- Li, C., Shen, H.-S. and Wang, H. (2019b), "Nonlinear bending of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Compos. Struct., 212, 317-325. https://doi.org/10.1016/j.compstruct.2019.01.020.
- Li, C., Shen, H.-S. and Wang, H. (2019c), "Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Euro. Phys. J. Plus, 134, 79. https://doi.org/10.1140/epjp/i2019-12572-7.
- Li, C., Shen, H.-S. and Wang, H. (2019d), "Nonlinear vibration of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Struct. Stabil. Dyn., 19, 1950034. https://doi.org/10.1142/S0219455419500342.
- Li, C., Shen, H.-S. and Wang, H. (2020a), "Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core", Compos. Struct., 237, 111894. https://doi.org/10.1016/j.compstruct.2020.111894.
- Li, C., Shen, H.-S., Wang, H. and Yu, Z. (2020b), "Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core", Int. J. Mech. Sci., 174, 105472. https://doi.org/10.1016/j.ijmecsci.2020.105472.
- Li, C., Shen, H.-S. and Wang, H. (2020c), "Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core", Nonlinear Dyn., 100, 3235-3252. https://doi.org/10.1007/s11071-020-05686-4.
- Li, C., Shen, H.-S. and Wang, H. (2020d), "Full-scale finite element modeling and nonlinear bending analysis of sandwich plates with functionally graded auxetic 3D lattice core", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220924657.
- Liang, Q., Yao, X., Wang, W., Liu, Y. and Wong, C.P. (2011), "A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials", ACS Nano, 5, 2392-2401. https://doi.org/10.1021/nn200181e.
- Lin, F., Xiang, Y. and Shen, H.-S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites - a molecular dynamics simulation", Compos. Part B-Eng., 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004.
- Liu, Q. (2006), "Literature review: Materials with negative Poisson's ratios and potential applications to aerospace and defence", Report no. dsto-gd-0472, Defence Science and Technology Organisation, Department of Defence, Australian Government.
- Ma, W., Yang, C., Ma, D. and Zhong, J.L. (2019), "Low-velocity impact response of nanotube-reinforced composite sandwich curved panels", SADHANA-Academy Proc. Eng. Sci., 44, 227. https://doi.org/10.1007/s12046-019-1214-x.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.179.
- Milton, G.W. (1992), "Composite materials with Poisson's ratios close to - 1", J. Mech. Phys. Solids., 40, 1105-1137. https://doi.org/10.1016/0022-5096(92)90063-8.
- Mir, M., Ali, M.N., Sami, J. and Ansari, U. (2014), "Review of mechanics and applications of auxetic structures", Adv. Mater. Sci. Eng., 2014, 753496. https://doi.org/10.1155/2014/753496.
- Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica, 51, 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
- Mirzaei, M. and Kiani, Y. (2017), "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation", Compos. Struct., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057.
- Naseer, A., Ahmad, F., Aslam, M., Guan, B.H., Wan Harund, W.S., Muhamade, N., Razaf, M.R. and German, R.M. (2019), "A review of processing techniques for graphene-reinforced metal matrix composites", Mater. Manufact. Process., 34, 957-985. https://doi.org/ 10.1080/10426914.2019.1615080.
- Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405, 1301-1306. https://doi.org/ 10.1016/j.physb.2009.11.071.
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A. (2004), "Electric filed effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.
- Oh, I.K. and Lee, I. (2001), "Thermal snapping and vibration characteristics of cylindrical composite panels using layerwise theory", Compos. Struct., 51, 49-61. https://doi.org/10.1016/S0263-8223(00)00123-9.
- Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91, 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
- Panda, S.K. and Singh, B.N. (2013), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20, 842-853. https://doi.org/10.1080/15376494.2012.677097.
- Paley, M. and Aboudi, J. (1991), "Inelastic thermal buckling of metal matrix laminated plates", J. Thermal Stress., 14, 479-497. https://doi.org/10.1080/01495739108927081.
- Prawoto, Y. (2012), "Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio", Comput. Mater. Sci., 58, 140-153. https://doi.org/10.1016/j.commatsci.2012.02.012.
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23, 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.
- Ren, X., Das, R., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic metamaterials and structures: a review", Smart Mater. Struct., 27, 023001. https://doi.org/10.1088/1361-665X/aaa61c.
- Roh, J.H., Oh, I.K., Yang, S.M., Han, J.H. and Lee, I. (2004), "Thermal post-buckling analysis of shape memory alloy hybrid composite shell panels", Smart Mater. Struct., 13, 1337-1344. https://doi.org/10.1088/0964-1726/13/6/006.
- Sahmani, S. and Fattahi, A.M. (2017), "Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments", Acta Mech., 228, 3789-3810. https://doi.org/10.1007/s00707-017-1912-6.
- Saxena, K.K., Das, R. and Calius, E.P. (2016), "Three decades of auxetics research-materials with negative Poisson's ratio: A review", Adv. Eng. Mater., 18, 1847-1870. https://doi.org/10.1002/adem.201600053
- Sharma, S., Kumar, P. and Chandra, R. (2017), "Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites: A molecular dynamics study", J. Compos. Mater., 51, 3299-3313. https://doi.org/10.1177/0021998316682363.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.
- Shen, H.-S. (2009a), Functionally Graded Materials Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton.
- Shen, H.-S. (2009b), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos, Struct., 91, 9-19. https://doi.org/10.1016/ j.compstruct.2009.04.026.
- Shen, H.-S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc.
- Shen, H.-S. (2017), Postbuckling Behavior of Plates and Shells, World Scientific Publishing Co. Pte. Ltd., Singapore.
- Shen, H.-S. and Wang, H. (2013), "Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium", Compos. Struct., 102, 250-260. https://doi.org/10.1016/j.compstruct.2013.03.011.
- Shen, H.-S. and Xiang, Y. (2015), "Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations", Compos. Struct., 123, 383-392. https://doi.org/ 10.1016/j.compstruct.2014.12.059.
- Shen, H.-S., and Xiang, Y. (2019), "Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties", Meccanica, 54, 283-297. https://doi.org/10.1007/s11012-019-00945-0.
- Shen, H.-S. and Xiang, Y. (2020), "Effect of negative Poisson's ratio on the axially compressed postbuckling behavior of FG-GRMMC laminated cylindrical panels on elastic foundations", Thin-Walled Struct., 157, 107090. https://doi.org/10.1016/j.tws.2020.107090.
- Shen, H.-S., Lin, F. and Xiang, Y. (2017a), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069.
- Shen, H.-S., Xiang, Y. and Lin, F. (2017b), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin-Walled Struct., 118, 229-237. https://doi.org/10.1016/j.tws.2017.05.006.
- Shen, H.-S., Xiang, Y. and Fan, Y. (2019a), "Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments", Nanotechnol. Rev., 8, 467-483. https://doi.org/ 10.1515/ntrev-2019-0042.
- Shen, H.-S., Xiang, Y. and Reddy, J.N. (2019b), "Thermal postbuckling behavior of FG-GRC laminated cylindrical panels with temperature-dependent properties", Compos. Struct., 211, 433-442. https://doi.org/10.1016/j.compstruct.2018.12.023.
- Shen, H.-S., Li, C. and Reddy, J.N. (2020a), "Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson's ratio", Comput. Methods Appl. Mech. Eng., 360, 112727. https://doi.org/10.1016/j.cma.2019.112727.
- Shen, H.-S., Huang, X.-H. and Yang, J. (2020b), "Nonlinear bending of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Mech. Adv. Mater. Struct., 27, 1141-1153. https://doi.org/10.1080/15376494.2020.1716412.
- Shen, H.-S., Xiang, Y. and Reddy, J.N. (2020c), "Effect of negative Poisson's ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments", Compos. Struct., 253, 112731. https://doi.org/10.1016/j.compstruct.2020.112731.
- Shen, L., Shen, H.-S. and Zhang, C.L. (2010), "Temperature-dependent elastic properties of single layer graphene sheets", Mater. Des., 31, 4445-4449. https://doi.org/10.1016/j.matdes.2010.04.016.
- Sun, C.T. and Li, S.J. (1988), "Three-dimensional effective elastic constants for thick laminates", J. Compos. Mater., 22, 629-639. https://doi.org/10.1177/002199838802200703.
- Tabandeh-Khorshid, M., Kumar, A., Omrani, E., Kim, C. and Rohatgi, P. (2020), "Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites", Compos. Part B-Eng., 183, 107664. https://doi.org/10.1016/j.compositesb.2019.107664.
- Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Tran, L.V., Wahab, M.A. and Kim, S.E. (2017), "An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates", Compos. Struct., 179, 35-49. https://doi.org/10.1016/j.compstruct.2017.07.056.
- Trang, L.T.N. and Tung, H.V. (2020), "Thermally induced postbuckling of higher order shear deformable CNT-reinforced composite flat and cylindrical panels resting on elastic foundations with elastically restrained edges", Mech. Based Des. Struct. Machin., 1-24. https://doi.org/10.1080/15397734.2020.1785312.
- Tung, H.V. and Trang, L.T.N. (2020), "Thermal post-buckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties", J. Thermoplastic Compos. Mater., 33, 97-124. https://doi.org/10.1177/ 0892705718804588.
- Yang, J., Huang, X.-H. and Shen, H.-S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin-Walled Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.
- Yang, J., Huang, X.-H. and Shen, H.-S. (2020b), "Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio resting on the Pasternak foundation", Eng. Struct., 207, 110250. https://doi.org/10.1016/ j.engstruct.2020.110250.
- Yang, J., Huang, X.-H. and Shen, H.-S. (2020c), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson's Ratio", Int. J. Struct. Stabil. Dyn., 20, 2050043. https://doi.org/10.1142/S0219455420500431.
- Yeh, H.L. amd Yeh, H.Y. (1999), "A discussion of negative poisson's ratio design for composites", J. Reinf. Plastics Compos., 18, 1546-1556. https://doi.org/10.1177/073168449901801701.
- Yu, Y. and Shen, H.-S. (2020a), "A comparison of nonlinear vibration and bending of hybrid CNTRC/metal laminated plates with positive and negative Poisson's ratios", Int. J. Mech. Sci., 183, 105790. https://doi.org/10.1016/j.ijmecsci.2020.105790.
- Yu, Y. and Shen, H.-S. (2020b), "A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative Poisson's ratios", Int. J. Struct. Stabil. Dyn., 20, 2043007. https://doi.org/10.1142/S021945542043007.5
- Zhang, J., Zhu, X., Yang, X. and Zhang, W. (2019), "Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads", Int. J. Impact Eng., 134, 103383. https://doi.org/10.1016/j.ijimpeng.2019.103383.
- Zhang, R., Yeh, H.L. and Yeh, H.Y. (1998), "A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites", J. Reinf. Plastics Compos., 17, 1651-1664. https://doi.org/10.1177/073168449801701806.
- Zhao, Y.X., Liu, T. and Li, Z.M. (2018), "Nonlinear bending analysis of a 3D braided composite cylindrical panel subjected to transverse loads in thermal environments", Chinese J. Aeron., 31, 1716-1727. https://doi.org/10.1016/j.cja.2018.03.022.