Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
References
- Ackroyd, J.A.D. (1978), "On the steady flow produced by a rotating disc with either surface suction or injection", J. Eng. Math., 12(3), 207-220. https://doi.org/10.1007/BF00036459.
- Ahmed, J., Khan, M. and Ahmad, L. (2019), "Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk", Phys. Lett. A, 383(12), 1300-1305. https://doi.org/10.1016/j.physleta.2019.01.024.
- Aziz, A., Alsaedi, A., Muhammad, T. and Hayat, T. (2018), "Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk", Results Physi., 8, 785-792. https://doi.org/10.1016/j.rinp.2018.01.009.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K., Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Buongiorno, J. (2006), "Convective transport in nanofluids", ASME. J. Heat Transfer., 128(3), 240-250. https://doi.org/10.1115/1.2150834.
- Chakraborty, T., Das, K. and Kundu, P.K. (2018), "Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions", Alexandria Eng. J., 57(1), 61-71. https://doi.org/10.1016/j.aej.2016.11.011.
- Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles, (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, U.S.A.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S. and Chau, K.W. (2019), "Numerical simulation of nanofluid flow inside a root canal", Eng. Applicat. Computat. Fluid Mech., 13(1), 254-264. https://doi.org/10.1080/19942060.2019.1578696.
- Gholinia, M., Hosseinzadeh, K., Mehrzadi, H., Ganji, D.D. and Ranjbar, A.A. (2019), "Investigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions", Case Studies. Thermal Eng., 13, 100356. https://doi.org/10.1016/j.csite.2018.11.007.
- Guo, C., Hu, M., Li, Z., Duan, F., He, L., Zhang, Z., Marchetti, F., Du, M. (2020), "Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers", Sensor. Actuat. B-Chem., 309, 127821. https://doi.org/10.1016/j.snb.2020.127821.
- Hafeez, A., Khan, M. and Ahmed, J. (2020), "Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk", Comput. Meth. Prog. Bio., 191, 105342. https://doi.org/10.1016/j.cmpb.2020.105342.
- Hu, Z., Lu, W. and Thouless, M.D. (2015), "Slip and wear at a corner with Coulomb friction and an interfacial strength", Wear, 338, 242-251. https://doi.org/10.1016/j.wear.2015.06.010.
- Hu, Z., Lu, W., Thouless, M.D. and Barber, J.R. (2016), "Effect of plastic deformation on the evolution of wear and local stress fields in fretting", Int. J. Solids Struct., 82, 1-8. https://doi.org/10.1016/j.ijsolstr.2015.12.031.
- Huminic, G. and Huminic, A. (2020), "Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review", J. Mol. Liq., 302, 112533. https://doi.org/10.1016/j.molliq.2020.112533.
- Khan, M.I., Hafeez, M.U., Hayat, T., Khan, M.I. and Alsaedi, A. (2020a), "Magneto rotating flow of hybrid nanofluid with entropy generation", Comput. Meth. Prog. Bio., 183, 105093. https://doi.org/10.1016/j.cmpb.2019.105093.
- Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020b), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2.
- Liu, C., Huang, X., Wu, Y.Y., Deng, X., Liu, J., Zheng, Z. and Hui, D. (2020), "Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide", Nanotechnol. Rev., 9(1), 155-169. https://doi.org/10.1515/ntrev-2020-0014.
- Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Trans., 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.
- Miklavcic, M. and Wang, C.Y. (2004), "The flow due to a rough rotating disk", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 55(2), 235-246. https://doi.org/10.1007/s00033-003-2096-6.
- Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Therm. Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4.
- Noghrehabadi, A., Behseresht, A. and Ghalambaz, M. (2013), "Natural convection of nanofluid over vertical plate embedded in porous medium: Prescribed surface heat flux", Appl. Math. Mech., 34(6), 669-686. https://doi.org/10.1007/s10483-013-1699-6.
- Pedley, T.J., Hill, N.A. and Kessler, J.O. (1988), "The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms", J. Fluid Mech., 195, 223-237. http://doi.org/10.1017/S0022112088002393.
- Rashidi, M.M., Abelman, S. and Mehr, N.F. (2013), "Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid", Int. J. Heat Mass Trans., 62, 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Saini, S. and Sharma, Y.D. (2018), "Analysis of onset of biothermal convection in a fluid containing gravitactic microorganisms by the energy method", Chinese J. Phys., 56(5), 2031-2038. https://doi.org/10.1016/j.cjph.2018.09.001.
- Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, K. and Gupta, S. (2017), "Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption", Nonlinear Eng., 6(2), 153-166. https://doi.org/10.1515/nleng-2016-0078
- Sheikholeslami, M. and Farshad, S.A. (2020), "Nanoparticle transportation inside a tube with quad-channel tapes involving solar radiation", Powder Technol., 378, 145-159. https://doi.org/10.1016/j.powtec.2020.09.041.
- Sheikholeslami, M., Hatami, M. and Ganji, D.D. (2013), "Analytical investigation of MHD nanofluid flow in a semi-porous channel", Powder Technol., 246, 327-336. https://doi.org/10.1016/j.powtec.2013.05.030.
- Sheikholeslami, M., Hatami, M. and Ganji, D.D. (2014), "Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field", J. Mole. Liq., 190, 112-120. https://doi.org/10.1016/j.molliq.2013.11.002.
- Sheikholeslami, M., Farshad, S.A., Shafee, A. and Babazadeh, H. (2020a), "Performance of solar collector with turbulator involving nanomaterial turbulent regime", Renew. Energ., 163, 1222-1237. https://doi.org/10.1016/j.renene.2020.08.144.
- Sheikholeslami, M., Jafaryar, M., Shafee, A. and Babazadeh, H. (2020b), "Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin", J. Clean. Prod., 261, 121206. https://doi.org/10.1016/j.jclepro.2020.121206
- Subhani, M. and Nadeem, S. (2019), "Numerical analysis of micropolar hybrid nanofluid", Appl. Nanosci., 9(4), 447-459. https://doi.org/10.1007/s13204-018-0926-2.
- Tlili, I., Bhatti, M.M., Hamad, S.M., Barzinjy, A.A., Sheikholeslami, M. and Shafee, A. (2019), "Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects", Physica A., 534, 122136. https://doi.org/10.1016/j.physa.2019.122136.
- Turkyilmazoglu, M. (2014), "Nanofluid flow and heat transfer due to a rotating disk", Comput. Fluids, 94, 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009.
- Von Karman T. (1921) "Uberlaminare and turbulente Reibung", ZAMM-J. Appl. Math. Mech., 1(4), 233-252. https://doi.org/10.1007/s10973-020-09421-4.
- Wang, H., Hu, Z., Lu, W. and Thouless, M.D. (2017), "The effect of coupled wear and creep during grid-to-rod fretting", Nucl. Eng. Des., 318, 163-173. https://doi.org/10.1016/j.nucengdes.2017.04.018.
- Wang, G., Yao, Y., Chen, Z. and Hu, P. (2019), "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology", Energy, 166, 256-266. https://doi.org/10.1016/j.energy.2018.10.089.
- Waqas, H., Khan, S.U., Hassan, M., Bhatti, M.M. and Imran, M. (2019), "Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles", J. Mole. Liq., 291, 111231. https://doi.org/10.1016/j.molliq.2019.111231.
- Xun, S., Zhao, J., Zheng, L. and Zhang, X. (2017), "Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity", Int. J. Heat Mass Trans., 111, 1001-1006. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.074.
- Yan, H., Xue, X., Chen, W., Wu, X., Dong, J., Liu, Y. and Wang, Z. (2020), "Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property", Appl. Surf. Sci., 530, 147295. https://doi.org/10.1016/j.apsusc.2020.147295.
- Yu, H., Dai, W., Qian, G., Gong, X., Zhou, D., Li, X. and Zhou, X. (2020), "The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement", Nanomaterials, 10(5), 897. https://doi.org/10.3390/nano10050897.
- Zhao, G., Wang, Z. and Jian, Y. (2019), "Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects", Int. J. Heat Mass Trans., 130, 821-830. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.007.
- Zhu, Z., Liu, Q., Liu, X. and Shui, J. (2020), "Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique", J. Phys. Chem. C, 124(5), 3069-3079. https://doi.org/10.1021/acs.jpcc.9b10173.