DOI QR코드

DOI QR Code

The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation

  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Al-Basyouni, K.S. (Mathematics Department, Faculty of Science, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.10.19
  • Accepted : 2021.01.11
  • Published : 2021.05.25

Abstract

In this article, an analytically and numerically 3D nanoliquid flow by a porous rotatable disk is presented in the presence of gyrotactic microorganisms. The mathematical model in the form of partial differential system is transmuted into dimensionless form by utilizing the appropriate transformation. The homotopy analysis approach is applied to attain the analytic solution of the problem. The effect of promising parameters on velocity distribution, temperature profile, nanoparticles volume fraction and motile microorganism distribution field are evaluated through graphs and in tabular form. The existence of Brownian motion and thermophoresis impacts are more proficient for heat transfer enhancement. Further the unique features like heat absorption/generation and energy activation are also examined for the present flow problem. The obtained results are compared with the earliear investigation to check the accuracy of present model.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Ackroyd, J.A.D. (1978), "On the steady flow produced by a rotating disc with either surface suction or injection", J. Eng. Math., 12(3), 207-220. https://doi.org/10.1007/BF00036459.
  2. Ahmed, J., Khan, M. and Ahmad, L. (2019), "Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk", Phys. Lett. A, 383(12), 1300-1305. https://doi.org/10.1016/j.physleta.2019.01.024.
  3. Aziz, A., Alsaedi, A., Muhammad, T. and Hayat, T. (2018), "Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk", Results Physi., 8, 785-792. https://doi.org/10.1016/j.rinp.2018.01.009.
  4. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K., Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  5. Buongiorno, J. (2006), "Convective transport in nanofluids", ASME. J. Heat Transfer., 128(3), 240-250. https://doi.org/10.1115/1.2150834.
  6. Chakraborty, T., Das, K. and Kundu, P.K. (2018), "Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions", Alexandria Eng. J., 57(1), 61-71. https://doi.org/10.1016/j.aej.2016.11.011.
  7. Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles, (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, U.S.A.
  8. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  9. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  10. Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S. and Chau, K.W. (2019), "Numerical simulation of nanofluid flow inside a root canal", Eng. Applicat. Computat. Fluid Mech., 13(1), 254-264. https://doi.org/10.1080/19942060.2019.1578696.
  11. Gholinia, M., Hosseinzadeh, K., Mehrzadi, H., Ganji, D.D. and Ranjbar, A.A. (2019), "Investigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions", Case Studies. Thermal Eng., 13, 100356. https://doi.org/10.1016/j.csite.2018.11.007.
  12. Guo, C., Hu, M., Li, Z., Duan, F., He, L., Zhang, Z., Marchetti, F., Du, M. (2020), "Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers", Sensor. Actuat. B-Chem., 309, 127821. https://doi.org/10.1016/j.snb.2020.127821.
  13. Hafeez, A., Khan, M. and Ahmed, J. (2020), "Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk", Comput. Meth. Prog. Bio., 191, 105342. https://doi.org/10.1016/j.cmpb.2020.105342.
  14. Hu, Z., Lu, W. and Thouless, M.D. (2015), "Slip and wear at a corner with Coulomb friction and an interfacial strength", Wear, 338, 242-251. https://doi.org/10.1016/j.wear.2015.06.010.
  15. Hu, Z., Lu, W., Thouless, M.D. and Barber, J.R. (2016), "Effect of plastic deformation on the evolution of wear and local stress fields in fretting", Int. J. Solids Struct., 82, 1-8. https://doi.org/10.1016/j.ijsolstr.2015.12.031.
  16. Huminic, G. and Huminic, A. (2020), "Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review", J. Mol. Liq., 302, 112533. https://doi.org/10.1016/j.molliq.2020.112533.
  17. Khan, M.I., Hafeez, M.U., Hayat, T., Khan, M.I. and Alsaedi, A. (2020a), "Magneto rotating flow of hybrid nanofluid with entropy generation", Comput. Meth. Prog. Bio., 183, 105093. https://doi.org/10.1016/j.cmpb.2019.105093.
  18. Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020b), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2.
  19. Liu, C., Huang, X., Wu, Y.Y., Deng, X., Liu, J., Zheng, Z. and Hui, D. (2020), "Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide", Nanotechnol. Rev., 9(1), 155-169. https://doi.org/10.1515/ntrev-2020-0014.
  20. Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Trans., 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.
  21. Miklavcic, M. and Wang, C.Y. (2004), "The flow due to a rough rotating disk", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 55(2), 235-246. https://doi.org/10.1007/s00033-003-2096-6.
  22. Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Therm. Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4.
  23. Noghrehabadi, A., Behseresht, A. and Ghalambaz, M. (2013), "Natural convection of nanofluid over vertical plate embedded in porous medium: Prescribed surface heat flux", Appl. Math. Mech., 34(6), 669-686. https://doi.org/10.1007/s10483-013-1699-6.
  24. Pedley, T.J., Hill, N.A. and Kessler, J.O. (1988), "The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms", J. Fluid Mech., 195, 223-237. http://doi.org/10.1017/S0022112088002393.
  25. Rashidi, M.M., Abelman, S. and Mehr, N.F. (2013), "Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid", Int. J. Heat Mass Trans., 62, 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.
  26. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  27. Saini, S. and Sharma, Y.D. (2018), "Analysis of onset of biothermal convection in a fluid containing gravitactic microorganisms by the energy method", Chinese J. Phys., 56(5), 2031-2038. https://doi.org/10.1016/j.cjph.2018.09.001.
  28. Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533.
  29. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  30. Sharma, K. and Gupta, S. (2017), "Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption", Nonlinear Eng., 6(2), 153-166. https://doi.org/10.1515/nleng-2016-0078
  31. Sheikholeslami, M. and Farshad, S.A. (2020), "Nanoparticle transportation inside a tube with quad-channel tapes involving solar radiation", Powder Technol., 378, 145-159. https://doi.org/10.1016/j.powtec.2020.09.041.
  32. Sheikholeslami, M., Hatami, M. and Ganji, D.D. (2013), "Analytical investigation of MHD nanofluid flow in a semi-porous channel", Powder Technol., 246, 327-336. https://doi.org/10.1016/j.powtec.2013.05.030.
  33. Sheikholeslami, M., Hatami, M. and Ganji, D.D. (2014), "Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field", J. Mole. Liq., 190, 112-120. https://doi.org/10.1016/j.molliq.2013.11.002.
  34. Sheikholeslami, M., Farshad, S.A., Shafee, A. and Babazadeh, H. (2020a), "Performance of solar collector with turbulator involving nanomaterial turbulent regime", Renew. Energ., 163, 1222-1237. https://doi.org/10.1016/j.renene.2020.08.144.
  35. Sheikholeslami, M., Jafaryar, M., Shafee, A. and Babazadeh, H. (2020b), "Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin", J. Clean. Prod., 261, 121206. https://doi.org/10.1016/j.jclepro.2020.121206
  36. Subhani, M. and Nadeem, S. (2019), "Numerical analysis of micropolar hybrid nanofluid", Appl. Nanosci., 9(4), 447-459. https://doi.org/10.1007/s13204-018-0926-2.
  37. Tlili, I., Bhatti, M.M., Hamad, S.M., Barzinjy, A.A., Sheikholeslami, M. and Shafee, A. (2019), "Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects", Physica A., 534, 122136. https://doi.org/10.1016/j.physa.2019.122136.
  38. Turkyilmazoglu, M. (2014), "Nanofluid flow and heat transfer due to a rotating disk", Comput. Fluids, 94, 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009.
  39. Von Karman T. (1921) "Uberlaminare and turbulente Reibung", ZAMM-J. Appl. Math. Mech., 1(4), 233-252. https://doi.org/10.1007/s10973-020-09421-4.
  40. Wang, H., Hu, Z., Lu, W. and Thouless, M.D. (2017), "The effect of coupled wear and creep during grid-to-rod fretting", Nucl. Eng. Des., 318, 163-173. https://doi.org/10.1016/j.nucengdes.2017.04.018.
  41. Wang, G., Yao, Y., Chen, Z. and Hu, P. (2019), "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology", Energy, 166, 256-266. https://doi.org/10.1016/j.energy.2018.10.089.
  42. Waqas, H., Khan, S.U., Hassan, M., Bhatti, M.M. and Imran, M. (2019), "Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles", J. Mole. Liq., 291, 111231. https://doi.org/10.1016/j.molliq.2019.111231.
  43. Xun, S., Zhao, J., Zheng, L. and Zhang, X. (2017), "Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity", Int. J. Heat Mass Trans., 111, 1001-1006. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.074.
  44. Yan, H., Xue, X., Chen, W., Wu, X., Dong, J., Liu, Y. and Wang, Z. (2020), "Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property", Appl. Surf. Sci., 530, 147295. https://doi.org/10.1016/j.apsusc.2020.147295.
  45. Yu, H., Dai, W., Qian, G., Gong, X., Zhou, D., Li, X. and Zhou, X. (2020), "The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement", Nanomaterials, 10(5), 897. https://doi.org/10.3390/nano10050897.
  46. Zhao, G., Wang, Z. and Jian, Y. (2019), "Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects", Int. J. Heat Mass Trans., 130, 821-830. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.007.
  47. Zhu, Z., Liu, Q., Liu, X. and Shui, J. (2020), "Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique", J. Phys. Chem. C, 124(5), 3069-3079. https://doi.org/10.1021/acs.jpcc.9b10173.