References
- Barrera, C., Battistella, T., Guanche, R. and Losada, I.J. (2020), "Mooring system fatigue analysis of a floating offshore wind turbine", Ocean Eng., 195, 106670. https://doi.org/10.1016/j.oceaneng.2019.106670.
- Chou, J.S. and Tu, W.T., (2011), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Failure Analysis, 18, 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.
- DNV-RP-C203 (2010), Fatigue Design of Offshore Steel Structures
- Do, T.Q., Mahmoud, H. and van de Lindt, J.W. (2015), "Fatigue life of wind turbine tower bases throughout Colorado", J. Perform. Construct. Facilities, 29(4), 04014109. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000612.
- Gao, Q., Liu, S., Fan, J. and Shen, Z. (2019), "Wind-induced fatigue analysis of wind turbine steel tower", Earth Environment. Sci., 310(3), 032007. https://doi.org/10.1016/j.engstruct.2015.07.038.
- Gunes, O., Altunsu, E. and Sari, A. (2019), "Yorulma Etkisideki Ruzgar Turbinlerinin Yasam O murlerinin Degerlendirilmesi", 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, October. https://doi.org/10.1109/ISMSIT.2019.8932844.
- Gupta, N. (2015), "Loads Analysis of the NREL 5-MW Reference Turbine for an Onshore Site", Master's Internship at Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Bremerhaven, Germany.
- GWEC (2019), "Global Wind Report 2018", Global Wind Energy Council, Brussels, Belgium.
- Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 187-197." https://doi.org/10.12989/was.2018.27.3.187.
- International Electrotechnical Commission (2005), IEC 61400-1 Wind Turbines - Part 1: Design requirements. Wind Turbines - Part 1: Design Requirements, 1-92. https://doi.org/10.1055/s2007-985912.
- Jonkman, B.J. and Buhl, M.L., Jr. (2007), "TurbSim User's Guide", NREL/EL-500-41136, Golden, CO: National Renewable Energy Laboratory.
- Jonkman, J.M. (2007), "Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine", National Renewable Energy Laboratory NREL/TP-500-41958, 68(November), 233. http://www.nrel.gov/docs/fy08osti/41958.pdf
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Contract, February, 1-75. http://tethys-development.pnnl.gov/sites/default/files/publications/Jonkman_et_al_2009.pdf
- Jonkman, J.M. and Buhl Jr, M.L. (2005), "FAST User's Guide", National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230.
- Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Cote, O.R. and Izumi, Y. (1976), "Turbulence structure in the convective boundary layer", J. Atmosph. Sci., 33(417), 2152-2169. https://doi.org/10.1175/15200469(1976)033<2152:TSITCB>2.0.CO;2.
- Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral Characteristics of Surface-layer Turbulence", J. Roy. Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707.
- Kanbur, F.A. (2014), "500 KW Enerji Kapasiteli Bir Ruzgar Turbinin C elik Kule Tasarimi", Master Thesis, Istanbul Technical University, Turkey.
- Ke, S.T., Wang, X.H., and Ge, Y.J. (2019), "Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference", Wind Struct., 28(2), 71-87. http://dx.doi.org/10.12989/was.2019.28.2.071.
- Li, H., Hu, Z., Wang, J. and Meng, X., (2018), "Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads", Int. J. Naval Architect. Ocean Eng., 10(1), 9-20. https://doi.org/10.1016/j.ijnaoe.2017.05.003.
- Manwell, J.F., Mcgowan, J.G. and Rogers, A.L. (2010), "Wind Energy Explained-Theory, Design and Application", Royal academic of engineering, Wiley, Chichester, U.K.
- Matha, D., Fischer, T., Kuhn, M. and Jonkman, J. (2010), "Model development and loads analysis of a wind turbine on a floating offshore tension leg platform", (No. NREL/CP-500-46725). National Renewable Energy Lab. (NREL), Golden, CO (United States).
- Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 12(3), 159-164. https://doi.org/10.1115/1.4009458
- Nunez-Casado, C., Lopez-Garcia, O., de las Heras, E.G., Cuerva-Tejero, A. and Gallego-Castillo, C. (2017), "Assembly strategies of wind turbine towers for minimum fatigue damage", Wind Struct., 25(6), 569-588. https://doi.org/10.12989/WAS.2017.25.6.569.
- Olsen, T. and Preus, R. (2015), "Small wind site assessment guidelines", National Renewable Energy Laboratory NREL/TP-5000-63696, 1-51.
- Palmgren, A. (1924), "Die lebensdauer von kugellagern". Zeitschrift des Vereinesdeutscher Ingenierure, 68(14), 339-341.
- Sahin S. (2016), "Wind Turbine Tower Structures Analysis According to Wind Load in Terms of Cost", Master. Thesis, University of Liege, Szczecin, Poland.
- Sahin, M. (2018), "Dynamic Modeling, Control and Adaptive Envelope Protection System for Horizontal Axis Wind Turbines", Ph.D. Dissertation, Middle East Technical University, Turkey
- Slot, R.M.M., Svenningsen, L., Sorensen, J.D. and Thogersen, M. L. (2018), "Directional fatigue accumulation in wind turbine steel towers", J. Phys.: Conference Series, 1102, 012017. https://dx.doi.org/10.1088/1742-6596/1102/1/012017.
- Udoh, I.E. and Zou, J. (2019), "Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine", Ocean Syst. Eng., 9(2), 191-218. https://doi.org/10.12989/ose.2019.9.2.191.
- Van der Tempel, J. (2006), Design of Support Structures for Offshore Wind Turbines, Report no. 2006.029, Delft University Wind Energy Research Institute (DUWIND).
- Yeter, B., Garbatov, Y. and Soares, C.G. (2015), "Fatigue damage assessment of fixed offshore wind turbine tripod support structures", Eng. Struct., 101, 518-528. https://doi.org/10.1016/j.engstruct.2015.07.038.
- Zhu, Y. and huang, M. (2020), "Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine", Wind Struct., 31(3), 217-227. https://doi.org/10.12989/was.2020.31.3.217.