DOI QR코드

DOI QR Code

Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications

  • Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Lau, J.Y. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Tan, M.L.P (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2020.09.04
  • 심사 : 2021.01.05
  • 발행 : 2021.05.25

초록

Silicene, a 2D allotrope of silicon, is predicted to be a potential material for future transistor that might be compatible with present silicon fabrication technology. Similar to graphene, silicene exhibits the honeycomb lattice structure. Consequently, silicene is a semimetallic material, preventing its application as a field-effect transistor. Therefore, this work proposes the uniform doping bandgap engineering technique to obtain the n-type silicene nanosheet. By applying nearest neighbour tight-binding approach and parabolic band assumption, the analytical modelling equations for band structure, density of states, electrons and holes concentrations, intrinsic electrons velocity, and ideal ballistic current transport characteristics are computed. All simulations are done by using MATLAB. The results show that a bandgap of 0.66 eV has been induced in uniformly doped silicene with phosphorus (PSi3NW) in the zigzag direction. Moreover, the relationships between intrinsic velocity to different temperatures and carrier concentration are further studied in this paper. The results show that the ballistic carrier velocity of PSi3NW is independent on temperature within the degenerate regime. In addition, an ideal room temperature subthreshold swing of 60 mV/dec is extracted from ballistic current-voltage transfer characteristics. In conclusion, the PSi3NW is a potential nanomaterial for future electronics applications, particularly in the digital switching applications.

키워드

과제정보

The authors acknowledge the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing excellent support and a stimulating research environment. Mu Wen would like to convey his gratitude for the award of PhD Zamalah Scholarship from the School of Graduate Studies, UTM. Michael Tan would like to acknowledge the financial support from UTM Fundamental Research (UTMFR) (Vote no.: Q.J130000.2551.21H51), which allowed the smooth progress of this research.

참고문헌

  1. Ahmadi, M.T., Lau, H.H., Ismail, R. and Arora, V.K. (2009), "Current-voltage characteristics of a silicon nanowire transistor", Microelectron. J., 40(3), 547-549. https://doi.org/10.1016/j.mejo.2008.06.060.
  2. Ali, M., Pi, X., Liu, Y. and Yang, D. (2017), "Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration", AIP Adv., 7(4), 045308. https://doi.org/10.1063/1.4980836.
  3. Arora, V.K. (2015), Nanoelectronics: Quantum Engineering of Low-dimensional Nanoensembles, CRC Press, Florida, U.S.A. https://doi.org/10.1201/9781315222516.
  4. Arora, V.K., Tan, M.L., Saad, I. and Ismail, R. (2007), "Ballistic quantum transport in a nanoscale metal-oxide-semiconductor field effect transistor", Appl. Phys. Lett., 91(10), 103510. https://doi.org/10.1063/1.2780058.
  5. Balendhran, S., Walia, S., Nili, H., Sriram, S. and Bhaskaran, M. (2015), "Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene", Small., 11(6), 640-652. https://doi.org/10.1002/smll.201402041.
  6. Banerjee, S.K., Register, L.F., Tutuc, E., Basu, D., Kim, S., Reddy, D. and MacDonald, A.H. (2010), "Graphene for CMOS and beyond CMOS applications", Proc. IEEE., 98(12), 2032-2046. https://doi.org/10.1109/JPROC.2010.2064151.
  7. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147. https://doi.org/10.12989/anr.2018.6.2.147.
  8. Chhowalla, M., Jena, D. and Zhang, H. (2016), "Two-dimensional semiconductors for transistors", Nature Rev. Mater., 1(11), 16052. https://doi.org/10.1038/natrevmats.2016.52.
  9. Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2020a), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., Int. J., 9(2), 105-112. http://doi.org/10.12989/anr.2020.9.2.105.
  10. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "2D honeycomb silicon: A review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.
  11. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020c), "Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure", Physica E, 116 113731. https://doi.org/10.1016/j.physe.2019.113731.
  12. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020d), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlattice. Microst., 140 106429. https://doi.org/10.1016/j.spmi.2020.106429.
  13. Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., Int. J., 10(1), 91-99. http://doi.org/10.12989/anr.2021.10.1.091.
  14. Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9780511805776.
  15. Datta, S. (2005), Quantum transport: Atom to transistor, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9781139164313.
  16. Ding, Y. and Ni, J. (2009), "Electronic structures of silicon nanoribbons", Appl. Phys. Lett., 95(8), 083115. https://doi.org/10.1063/1.3211968.
  17. Ding, Y. and Wang, Y. (2013), "Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties", J. Phys. Chem. C., 117(35), 18266-18278. https://doi.org/10.1021/jp407666m.
  18. Gao, J., Zhang, J., Liu, H., Zhang, Q. and Zhao, J. (2013), "Structures, mobilities, electronic and magnetic properties of point defects in silicene", Nanoscale, 5(20), 9785-9792. https://doi.org/10.1039/C3NR02826G.
  19. Gert, A., Nestoklon, M. and Yassievich, I. (2015), "Band structure of silicene in the tight binding approximation", J. Exp. Theo. Phys., 121(1), 115-121. https://doi.org/10.1134/S1063776115060072.
  20. Goossens, S., Navickaite, G., Monasterio, C., Gupta, S., Piqueras, J.J., Perez, R., Burwell, G., Nikitskiy, I., Lasanta, T. and Galan, T. (2017), "Broadband image sensor array based on graphene-CMOS integration", Nature Photonics, 11(6), 366-371. https://doi.org/10.1038/nphoton.2017.75.
  21. Gupta, A., Sakthivel, T. and Seal, S. (2015), "Recent development in 2D materials beyond graphene", Prog. Mater. Sci., 73, 44-126. https://doi.org/10.1016/j.pmatsci.2015.02.002.
  22. Guzman-Verri, G.G. and Lew Yan Voon, L.C. (2007), "Electronic structure of silicon-based nanostructures", Phys. Rev. B., 76(7), 075131. https://doi.org/10.1103/PhysRevB.76.075131.
  23. Harrison, W.A. (2004), Elementary Electronic Structure: Revised, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/5432.
  24. Huang, S., Kang, W. and Yang, L. (2013), "Electronic structure and quasiparticle bandgap of silicene structures", Appl. Phys. Lett., 102(13), 133106. https://doi.org/10.1063/1.4801309
  25. IEEE (2018), International Roadmap for Devices and Systems (IRDS). https://irds.ieee.org/.
  26. Ismail, R., Ahmadi, M.T. and Anwar, S. (2016), Advanced Nanoelectronics, CRC Press, Florida, U.S.A. https://doi.org/10.1201/9781315217185.
  27. Johari, Z., Ahmadi, M.T., Chek, D.C.Y., Amin, N.A. and Ismail, R. (2010), "Modelling of graphene nanoribbon Fermi energy", J. Nanomater., 2010 14. https://doi.org/10.1155/2010/909347.
  28. Jooq, M.K.Q., Mir, A., Mirzakuchaki, S. and Farmani, A. (2018), "Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors", Physica E, 104 286-296. https://doi.org/10.1016/j.physe.2018.08.008.
  29. Kazmierski, T.J., Zhou, D. and Al-Hashimi, B.M. (2007). "A fast, numerical circuit-level model of carbon nanotube transistor", 2007 IEEE International Symposium on Nanoscale Architectures. https://doi.org/10.1109/NANOARCH.2007.4400855.
  30. Kim, R. and Lundstrom, M. (2008), Notes on Fermi-Dirac Integrals, arXiv preprint arXiv:0811.0116. http://nanohub.org/resources/5475.
  31. Le Lay, G., Solonenko, D. and Vogt, P. (2018), Synthesis of Silicene, Springer. https://doi.org/10.1007/978-3-319-99964-7_5.
  32. Lew Yan Voon, L., Zhu, J. and Schwingenschlogl, U. (2016), "Silicene: Recent theoretical advances", Appl. Phys. Rev., 3(4), 040802. https://doi.org/10.1063/1.4944631.
  33. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017a), "Analytical study of the electronic properties of boron nitride nanosheet", 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). https://doi.org/10.1109/RSM.2017.8069115.
  34. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017b), "Band gap engineering of BC2N for nanoelectronic applications", Superlattice. Microst., 112, 328-338. https://doi.org/10.1016/j.spmi.2017.09.040.
  35. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2018), "Performance analysis of one dimensional BC2N for nanoelectronics applications", Physica E, 102, 33-38. https://doi.org/10.1016/j.physe.2018.04.005.
  36. Lopez-Bezanilla, A. (2014), "Substitutional doping widens silicene gap", J. Phys. Chem. C., 118(32), 18788-18792. https://doi.org/10.1021/jp5060809.
  37. Lundstrom, M.S. and Antoniadis, D.A. (2014), "Compact models and the physics of nanoscale FETs", IEEE T. Electron Dev., 61(2), 225-233. https://doi.org/10.1109/TED.2013.2283253.
  38. Lundstrom, M. and Jeong, C. (2013), Near-Equilibrium Transport: Fundamentals and Applications, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/7975.
  39. Ma, L., Zhang, J.-M., Xu, K.-W. and Ji, V. (2014), "Nitrogen and Boron substitutional doped zigzag silicene nanoribbons: Ab initio investigation", Physica E, 60, 112-117. https://doi.org/10.1016/j.physe.2014.02.013.
  40. Mohan, B., Kumar, A. and Ahluwalia, P.K. (2014), "Electronic and optical properties of silicene under uni-axial and bi-axial mechanical strains: A first principle study", Physica E, 61, 40-47. https://doi.org/10.1016/j.physe.2014.03.013.
  41. Molle, A., Grazianetti, C., Tao, L., Taneja, D., Alam, M.H. and Akinwande, D. (2018), "Silicene, silicene derivatives, and their device applications", Chem. Soc. Rev., 47(16), 6370-6387. https://doi.org/10.1039/C8CS00338F.
  42. Ni, Z., Zhong, H., Jiang, X., Quhe, R., Luo, G., Wang, Y., Ye, M., Yang, J., Shi, J. and Lu, J. (2014), "Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors", Nanoscale, 6(13), 7609-7618. https://doi.org/10.1039/c4nr00028e.
  43. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  44. Rahman, A., Guo, J., Datta, S. and Lundstrom, M.S. (2003), "Theory of ballistic nanotransistors", IEEE T. Electron Dev., 50(9), 1853-1864. https://doi.org/10.1109/TED.2003.815366.
  45. Schwierz, F., Pezoldt, J. and Granzner, R. (2015), "Two-dimensional materials and their prospects in transistor electronics", Nanoscale, 7(18), 8261-8283. https://doi.org/10.1039/C5NR01052G.
  46. Stpniak-Dybala, A., Dyniec, P., Kopciuszyski, M., Zdyb, R., Jalochowski, M. and Krawiec, M. (2019), "Planar silicene: a new silicon allotrope epitaxially grown by segregation", Adv. Funct. Mater., 29(50), 1906053. https://doi.org/10.1002/adfm.201906053.
  47. Supriyo, D. (2017), Lessons From Nanoelectronics: A New Perspective On Transport -Part A: Basic Concepts, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/10440-vol1.
  48. Tang, Q. and Zhou, Z. (2013), "Graphene-analogous low-dimensional materials", Prog. Mater. Sci., 58(8), 1244-1315. https://doi.org/10.1016/j.pmatsci.2013.04.003.
  49. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A. and Akinwande, D. (2015), "Silicene field-effect transistors operating at room temperature", Nature nanotechnol., 10(3), 227. https://doi.org/10.1038/NNANO.2014.325.
  50. Taur, Y., Mii, Y.-J., Frank, D.J., Wong, H.-S., Buchanan, D.A., Wind, S.J., Rishton, S.A., Sai-Halasz, G. and Nowak, E.J. (1995), "CMOS scaling into the 21st century: 0.1 ㎛ and beyond", IBM J. Res. Dev., 39(1.2), 245-260. https://doi.org/10.1147/rd.391.0245.
  51. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B. and Le Lay, G. (2012), "Silicene: compelling experimental evidence for graphenelike two-dimensional silicon", Phys. Rev. Lett., 108(15), 155501. https://doi.org/10.1103/PhysRevLett.108.155501.
  52. Voon, L.L.Y., Lopez-Bezanilla, A., Wang, J., Zhang, Y. and Willatzen, M. (2015), "Effective Hamiltonians for phosphorene and silicene", New J. Phys., 17(2), 025004. https://doi.org/10.1088/1367-2630/17/2/025004.
  53. Wang, Z., Feng, T. and Ruan, X. (2015), "Thermal conductivity and spectral phonon properties of freestanding and supported silicene", J. Appl. Phys., 117(8), 084317. https://doi.org/10.1063/1.4913600.
  54. Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 209-221. http://doi.org/10.12989/anr.2019.7.3.209.