Acknowledgement
This study is financially supported by the National Natural Science Foundation of China (Grant No. 41772290).
References
- Cao, L.F., Teh, C.I. and Chang, M.F. (2001), "Undrained cavity expansion in modified Cam clay I: Theoretical analysis", Geotechnique, 51(4), 323-334. https://doi.org/10.1680/geot.2001.51.4.323.
- Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349.
- Chang, M.F., Teh, C.I. and Cao, L.F. (2001), "Undrained cavity expansion in modified Cam clay II: Application to the interpretation of the piezocone test", Geotechnique, 51(4), 335-350. https://doi.org/10.1680/geot.2001.51.4.335.
- Chen, H.H., Li, L., Li, J.P. and Wang, H. (2019), "Stress transform method to undrained and drained expansion of a cylindrical cavity in anisotropic modified cam-clay soils", Comput. Geotech., 106, 128-142. https://doi.org/10.1016/j.compgeo.2018.10.016.
- Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 62(5), 447-456. https://doi.org/10.1680/geot.11.P.027.
- Chen, S.L. and Liu, K. (2018), "Undrained cylindrical cavity expansion in anisotropic critical state soils", Geotechnique, 69(3), 189-202. https://doi.org/10.1680/jgeot.16.p.335.
- Collins, I.F. and Stimpson, J.R. (1994), "Similarity solutions for drained and undrained cavity expansions in soils", Geotechnique, 44(1), 21-34. https://doi.org/10.1680/geot.1994.44.1.21.
- Cudmani, R. and Osinov, V.A. (2001), "The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests", Can. Geotech. J., 38(3), 622-638. https://doi.org/10.1139/t00-124.
- Dafalias, Y.F. (1986), "An anisotropic critical state soil plasticity model", Mech. Res. Commun., 13(6), 341-347. https://doi.org/10.1016/0093-6413(86)90047-9.
- dos Santos, T., Vaz-Romero, A. and Rodriguez-Martinez, J.A. (2019), "Dynamic cylindrical cavity expansion in orthotropic porous ductile materials", Int. J. Impact Eng., 132, 103325. https://doi.org/10.1016/j.ijimpeng.2019.103325.
- Gao, Y., Li, Z., Sun, D.A. and Yu, H.H. (2021), "A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios", Soil Till. Res., 209, 104913. https://doi.org/10.1016/j.still.2020.104913.
- Houlsby, G.T. and Withers, N.J. (1988), "Analysis of the cone pressuremeter test in clay", Geotechnique, 38(4), 575-587. https://doi.org/10.1680/geot.1988.38.4.575.
- Johnsen, J., Holmen, J.K., Warren, T.L. and Borvik, T. (2018), "Cylindrical cavity expansion approximations using different constitutive models for the target material", Int. J. Protective Struct., 9(2), 199-225. https://doi.org/10.1177%2F2041419617741321. https://doi.org/10.1177%2F2041419617741321
- Ladanyi, B. (1963), "Expansion of a cavity in a saturated clay medium", J. Soil Mech. Found. Div., 89(4), 127-164. https://doi.org/10.1061/JSFEAQ.0000524
- Li, C. and Zou, J.F. (2019), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on spatially mobilized plane failure criterion", Int. J. Geomech., 19(7), 04019075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001458.
- Li, J.P., Gong, W.B., Li, L. and Liu, F. (2017), "Drained elastoplastic solution for cylindrical cavity expansion in K0-consolidated anisotropic soil", J. Eng. Mech., 143(11), 04017133. https://doi.org/10.1061/(ASCE)em.1943-7889.0001357.
- Li, L., Chen, H.H., Li, J.P. and Sun, D.A. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132: 103990. https://doi.org/10.1016/j.compgeo.2020.103990.
- Li, L., Li, J.P. and Sun, D.A. (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.
- Marshall, A.M. (2012), "Tunnel-pile interaction analysis using cavity expansion methods", J. Geotech. Geoenviron. Eng., 138(10), 1237-1246. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000709.
- Matsuoka, H. and Sun, D.A. (2014), The SMP Concept-Based 3D Constitutive Models for Geomaterials, CRC Press.
- Mo, P.Q., Gao, X.W., Yang, W.B. and Yu, H.S. (2020a), "A cavity expansion-based solution for interpretation of CPTu data in soils under partially drained conditions", Int. J. Numer. Anal. Met., 44(7), 1053-1076. https://doi.org/10.1002/nag.3050.
- Mo, P.Q., Ma, D.Y., Zhu, Q.Y. and Hu, Y.C. (2020b), "Interpretation of heating and cooling data from thermal cone penetration test using a 1D numerical model and a PSO algorithm", Comput. Geotech., 130, 103908. https://doi.org/10.1016/j.compgeo.2020.103908.
- Mo, P.Q., Marshall, A.M. and Fang, Y. (2021), "Cavity expansion-contraction-based method for tunnel-soil-pile interaction in a unified clay and sand model: drained analysis", Int. J. Geomech., 21(5), 04021055. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002016.
- Moug, D.M., Boulanger, R.W, DeJong, J.T. and Jaeger, R.A. (2019), "Axisymmetric simulations of cone penetration in saturated clay", J. Geotech. Geoenviron. Eng., 145(4), 04019008. https://doi.org/10.1061/(asce)gt.1943-5606.0002024.
- Peng, Y., Liu, H.L., Li, C., Ding, X.M., Deng, X., and Wang, C.Y. (2021), "The detailed particle breakage around the pile in coral sand", Acta Geotech., https://doi.org/10.1007/s11440-020-01089-2.
- Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361.
- Roscoe, K.H. and Burland, J.B. (1968), On the Generalized Stress-Strain Behavior of 'Wet Clay', Cambridge University Press.
- Russell, A.R. and Khalili, N. (2002), "Drained cavity expansion in sands exhibiting particle crushing", Int. J. Numer. Anal. Met., 26(4), 323-340. https://doi.org/10.1002/nag.203.
- Salgado, R., Mitchell, J.K. and Jamiolkowski, M. (1997), "Cavity expansion and penetration resistance in sand", J. Geotech. Geoenviron. Eng., 123(4), 344-354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
- Sekiguchi, H. and Ohta, H. (1977), "Induced anisotropy and time dependency in clays", Proceedings of the 9th ICSMFE, Tokyo, Japan, July.
- Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.
- Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: Theoretical solution", Acta Geotech., 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.
- Vrakas, A. (2016), "A rigorous semi-analytical solution for undrained cylindrical cavity expansion in critical state soils", Int. J. Numer. Anal. Met., 40(15), 2137-2160. https://doi.org/10.1002/nag.2529.
- Wang, Y., Li, L., Li, J.P. and Sun, D.A. (2020), "Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis", Geomech. Eng., 21(3), 279-288. https://doi.org/10.12989/gae.2020.21.3.279.
- Wheeler, S.J., Naatanen, A., Karstunen, M. and Lojander, M. (2003), "An anisotropic elastoplastic model for soft clays", Can. Geotech. J., 40(2), 403-418. https://doi.org/10.1139/t02-119.
- Wroth, C.P. and Windle, D. (1975), "Analysis of the pressuremeter test allowing for volume change", Geotechnique, 25(3), 598-604. https://doi.org/10.1680/geot.1975.25.3.598.
- Yang, C.Y., Chen, H.H. and Li, J.P. (2020), "Drained cylindrical cavity expansion analysis in anisotropic soils considering 3D strength", Geotechnique Lett., 10(2), 346-352. https://doi.org/10.1680/jgele.19.00043.
- Yang, C.Y., Li, J.P., Li, L. and Sun DA. (2021a), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130, 103922. https://doi.org/10.1016/j.compgeo.2020.103922.
- Yang, C.Y., Chen, H.H., Li, J.P. and Li, L. (2021b), "Undrained spherical cavity expansion in unsaturated soils: Semi-analytical solution coupling hydraulic and mechanical behaviors", Int. J. Geomech., 21(6), 04021070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002028.
- Zhou, H., Kong, G.Q. and Liu, H.L. (2016), "A semi-analytical solution for cylindrical cavity expansion in elastic-perfectly plastic soil under biaxial in situ stress field", Geotechnique, 66(7), 1-12. https://doi.org/10.1680/jgeot.15.P.115.
- Zhou, H., Kong, G.Q., Liu, H.L. and Laloui, L. (2018), "Similarity solution for cavity expansion in thermoplastic soil", Int. J. Numer. Anal. Met., 42(2), 274-294. https://doi.org/10.1002/nag.2724.
- Zhou, H., Liu, H.L., Zha, Y.H. and Feng, Y. (2017), "A general semi-analytical solution for consolidation around an expanded cylindrical and spherical cavity in modified cam clay", Comput. Geotech., 91, 71-81. https://doi.org/10.1016/j.compgeo.2017.07.005.
- Zou, J.F. and Xia, M.Y. (2017), "A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress", Geomech. Eng., 12(3), 347-360. https://doi.org/10.12989/gae.2017.12.3.347.
- Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.
- Zou, J.F., Yang, T., Ling, W., Guo, W.J. and Huang, F.L. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. http://doi.org/10.12989/gae.2019.18.3.225.
Cited by
- Numerical modelling of the long-term effects of XCC piling in fine-grained soil vol.26, pp.1, 2021, https://doi.org/10.12989/gae.2021.26.1.027