DOI QR코드

DOI QR Code

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb (Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University) ;
  • Alijani, Ali (Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University) ;
  • Maleki, Vahid A. (Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University) ;
  • Kazemi, Admin (Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University)
  • 투고 : 2020.12.19
  • 심사 : 2021.01.28
  • 발행 : 2021.05.25

초록

Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.

키워드

참고문헌

  1. Ajri, M. and Seyyed Fakhrabadi, M.M. (2018), "Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory", J. Comput. Appl. Mech., 49(1), 44-53. http://doi.org/10.22059/JCAMECH.2018.228477.129.
  2. Ajri, M., Fakhrabadi, M.M.S. and Rastgoo, A. (2018), "Analytical solution for nonlinear dynamic behavior of viscoelastic nanoplates modeled by consistent couple stress theory", Lat. Am. J. Solid. Struct., 15, 78-90. http://doi.org/10.1590/1679-78254918.
  3. Al-Furjan, M., Dehini, R., Paknahad, M., Habibi, M. and Safarpour, H. (2021), "On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment", Arch. Civ. Mech. Eng., 21(1), 1-25. https://doi.org/10.1007/s43452-020-00151-w.
  4. Allahyari, E., Asgari, M. and Jafari, A.A. (2020), "Nonlinear size-dependent vibration behavior of graphene nanoplate considering surfaces effects using a multiple-scale technique", Mech. Adv. Mater. Struct., 27(9), 697-706. https://doi.org/10.1080/15376494.2018.1494870.
  5. Allen, J.B. and Rabiner, L.R. (1977), "A unified approach to short-time Fourier analysis and synthesis", Proceedings of the IEEE, 65(11), 1558-1564. https://doi.org/10.1109/PROC.1977.10770
  6. Amabili, M. (2006), "Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections", J. Sound Vib., 291(3-5), 539-565. https://doi.org/10.1016/j.jsv.2005.06.007
  7. Ansari, R. and Ajori, S. (2015), "Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations", Physica B, 459, 58-61. https://doi.org/10.1016/j.physb.2014.11.101.
  8. Ansari, R., Ajori, S. and Darvizeh, M. (2015), "Vibration characteristics of single- and double-walled carbon nanotubes functionalized with amide and amine groups", Physica B, 462, 8-14. https://doi.org/10.1016/j.physb.2015.01.003.
  9. Ansari, R., Sadeghi, F. and Darvizeh, M. (2016), "Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes", Physica B, 482, 28-37. https://doi.org/10.1016/j.physb.2015.11.028.
  10. Asadi, E., Askari, H., Behrad Khamesee, M. and Khajepour, A. (2017), "High frequency nano electromagnetic self-powered sensor: Concept, modelling and analysis", Measurement, 107, 31-40. https://doi.org/10.1016/j.measurement.2017.04.019.
  11. Assadi, A. (2013), "Size dependent forced vibration of nanoplates with consideration of surface effects", Appl. Math. Model., 37(5), 3575-3588. https://doi.org/10.1016/j.apm.2012.07.049.
  12. Attar, F., Khordad, R., Zarifi, A. and Modabberasl, A. (2021), "Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates", Physica B, 600, 412623. https://doi.org/10.1016/j.physb.2020.412623.
  13. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278. http://doi.org/10.12989/anr.2018.6.3.257.
  14. Barretta, R., Faghidian, S.A. and Marotti de Sciarra, F. (2019), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.
  15. Basutkar, R. (2019), "Analytical modelling of a nanoscale series-connected bimorph piezoelectric energy harvester incorporating the flexoelectric effect", Int. J. Eng. Sci., 139, 42-61. https://doi.org/10.1016/j.ijengsci.2019.01.007.
  16. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277.
  17. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. http://doi.org/10.12989/anr.2018.6.2.147.
  18. Chandra, Y., Mukhopadhyay, T. and Adhikari, S. (2020), "Size-dependent dynamic characteristics of graphene based multilayer nano hetero-structures", Nanotechnology, 31(14), 145705. https://doi.org/10.1088/1361-6528/ab6231
  19. Chen, L., Pan, S., Fei, Y., Zhang, W. and Yang, F. (2019), "Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting", Appl. Phys. A, 125(4), 242-267. https://doi.org/10.1007/s00339-019-2539-3.
  20. Chung, T. (2007), General Continuum Mechanics, Cambridge University Press.
  21. Cicek, S. and Nadaroglu, H. (2015), "The use of nanotechnology in the agriculture", Adv. Nano Res., Int. J., 3(4), 207-231. http://doi.org/10.12989/anr.2015.3.4.207.
  22. Di Sia, P. (2013), "A new theoretical Model for the dynamical Analysis of Nano-Bio-Structures", Adv. Nano Res., Int. J., 1(1), 29-42. http://doi.org/10.12989/anr.2013.1.1.029.
  23. Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads", Adv. Nano Res., Int. J., 6(4), 399-412. http://doi.org/10.12989/anr.2018.6.4.399.
  24. Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2015), "Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators", Measurement, 73, 127-136. https://doi.org/10.1016/j.measurement.2015.05.009.
  25. Farajpour, A., Mohammadi, M., Shahidi, A. and Mahzoon, M. (2011), "Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model", Physica E, 43(10), 1820-1825. https://doi.org/10.1016/j.physe.2011.06.018.
  26. Fazelzadeh, S.A. and Ghavanloo, E. (2014), "Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments", Acta Mechanica Sinica, 30(1), 84-91. https://doi.org/10.1007/s10409-013-0102-6.
  27. Ghadiri, M., Rajabpour, A. and Akbarshahi, A. (2018), "Nonlinear vibration and resonance analysis of graphene sheet subjected to moving load on a visco-Pasternak foundation under thermo-magnetic-mechanical loads: An analytical and simulation study", Measurement, 124, 103-119. https://doi.org/10.1016/j.measurement.2018.04.007.
  28. Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., Int. J., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.
  29. Ghorbanpour Arani, A., Maboudi, M., Ghorbanpour Arani, A. and Amir, S. (2013), "2D-magnetic field and biaxiall in-plane preload effects on the vibration of double bonded orthotropic graphene sheets", J. Solid Mech., 5(2), 193-205.
  30. Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., Int. J., 9(4), 277-294. http://doi.org/10.12989/anr.2020.9.4.277.
  31. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-65. http://doi.org/10.12989/anr.2019.7.1.051.
  32. Kheradmandan, H. and Barati, F. (2017), "Modeling width of Weld in SAW with Adding Nano Material", J. Res. Sci. Eng. Technol., 5(2), 1-7. https://doi.org/10.24200/jrset.vol5iss02pp1-7
  33. Khodashenas, B. (2015), "Nitrate reductase enzyme in Escherichia coli and its relationship with the synthesis of silver nanoparticles", UCT J. Res. Sci. Eng. Technol., 3(1), 26-32. https://doi.org/10.24200/jrset.vol3iss01pp26-32
  34. Kitipornchai, S., He, X. and Liew, K. (2005), "Continuum model for the vibration of multilayered graphene sheets", Phys. Rev. B, 72(7), 89-97. https://doi.org/10.1103/PhysRevB.72.075443.
  35. Kumar, T.P., Narendar, S. and Gopalakrishnan, S. (2013), "Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics", Compos. Struct., 100, 332-342. https://doi.org/10.1016/j.compstruct.2012.12.039.
  36. Le, K.Q. (2020), "Electromagnetic modeling of excited-state dynamics in the vicinity of metallic nanostructures", Physica B, 45, 81-97. https://doi.org/10.1016/j.physb.2020.412381.
  37. Lu, T.-F., Fan, Y. and Morita, T. (2019), "An investigation of piezoelectric actuator high speed operation for self-sensing", Measurement, 136, 105-115. https://doi.org/10.1016/j.measurement.2018.12.055.
  38. Maugin, G.A. (2013), "Continuum mechanics and electromagnetism", In: Continuum Mechanics Through the Twentieth Century, 199-221. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6353-1_12.
  39. Mehrez, S., Karati, S.A., Dolat Abadi, P.T., Shah, S., Azam, S., Khorami, M. and Assilzadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., Int. J., 9(4), 221-235. https://doi.org/10.12989/anr.2020.9.4.221.
  40. Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos. Part B-Eng., 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060.
  41. Mohammadian, M., Abolbashari, M.H. and Hosseini, S.M. (2019), "Axial vibration of hetero-junction CNTs mass nanosensors by considering the effects of small scale and connecting region: An analytical solution", Physica B, 553, 137-150. https://doi.org/10.1016/j.physb.2018.10.044.
  42. Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory", J. Appl. Phys., 105(6), 56-87. https://doi.org/10.1063/1.3091292.
  43. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.
  44. Ponmozhi, J., Frias, C., Marques, T. and Frazao, O. (2012), "Smart sensors/actuators for biomedical applications: Review", Measurement, 45(7), 1675-1688. https://doi.org/10.1016/j.measurement.2012.02.006.
  45. Pradhan, S. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021.
  46. Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
  47. Rezaee, M. and Maleki, V.A. (2015), "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 229(4), 644-650. https://doi.org/10.1177/0954406214538011.
  48. Rezaei, A., Kamali, B. and Kamali, A.R. (2020), "Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures", Measurement, 150, 76-89. https://doi.org/10.1016/j.measurement.2019.107087.
  49. Salimi, M., Khoddam, K., Morakkabatchy, D. and Pornadem, M. (2015), "Optimization of carbon nano tube field-effect transistors (CNTFET) and compare them to CMOS silicon", J. Res. Sci. Eng. Technol., 3(4), 10-16.
  50. Salmani, R., Gholami, R., Ansari, R. and Fakhraie, M. (2021), "Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets", Eur. Phys. J. Plus, 136(1), 1-19. https://doi.org/10.1140/epjp/s13360-020-01009-z.
  51. Samaei, A., Abbasion, S. and Mirsayar, M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38(7), 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003.
  52. Saremi, M., Saremi, M., Niazi, H. and Goharrizi, A.Y. (2013), "Modeling of lightly doped drain and source graphene nanoribbon field effect transistors", Superlatt. Microstruct., 60, 67-72. https://doi.org/10.1016/j.spmi.2013.04.013.
  53. Shafiei, Z., Sarrami-Foroushani, S., Azhari, F. and Azhari, M. (2020), "Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets", Aerosp. Sci. Technol., 98, 105-122. https://doi.org/10.1016/j.ast.2019.105652.
  54. Shen, H. and Huang, X. (2007), "Nonlinear vibration and transient analysis of hybrid laminated plates", Anal. Des. Plated Struct,, 56, 376-421. https://doi.org/10.1533/9781845692292.376.
  55. Shen, L., Shen, H.-S. and Zhang, C.-L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comp. Mater. Sci., 48(3), 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  56. Singh, P.P. and Azam, M.S. (2020), "Free vibration and buckling analysis of elastically supported transversely inhomogeneous functionally graded nanoplate in thermal environment using Rayleigh-Ritz method", J. Vib. Control, 56, 67-89. https://doi.org/10.1177/1077546320966932.
  57. Tao, C. and Dai, T. (2020), "Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates", Eur. J. Mech. A-Solid., 45, 92-106. https://doi.org/10.1016/j.euromechsol.2020.104171.
  58. Tezerjani, M.D., Benvidi, A., Dehghani Firouzabadi, A., Mazloum-Ardakani, M. and Akbari, A. (2017), "Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine", Measurement, 101, 183-189. https://doi.org/10.1016/j.measurement.2017.01.029.
  59. Trimarco, C. and Maugin, G.A. (2001), "Material mechanics of electromagnetic solids", In: Configurational Mechanics of Materials, 129-171. Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-2576-2_3.
  60. Umar, A., Ibrahim, A.A., Nakate, U.T., Albargi, H., Alsaiari, M.A., Ahmed, F., Alharthi, F.A., Ali Alghamdi, A. and Al-Zaqri, N. (2021), "Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application", Chem. Phys. Lett., 763, 138204. https://doi.org/10.1016/j.cplett.2020.138204.
  61. Vahidi Pashaki, P., Pouya, M. and Maleki, V.A. (2018), "High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.
  62. Wang, Y., Li, F.-M. and Wang, Y.-Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physica E, 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007.
  63. Wong, K., Chuan, M., Chong, W., Alias, N., Hamzah, A., Lim, C. and Tan, M. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 20-39. http://doi.org/10.12989/anr.2019.7.3.209.
  64. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak", Adv. Nano Res., Int. J., 4(4), 309-326. http://doi.org/10.12989/anr.2016.4.4.309.