Acknowledgement
This work was supported by the Major Research plan of the National Natural Science Foundation of China (Grant No.91441132). And the Publication cost of this paper was supported by the Korean Chemical Society.
References
- Guo, L.; Han, C.; Zhang, S.; Zhong, Q.; Ding, J.; Zhang, B.; Zeng, Y. Fuel 2018, 233, 769. https://doi.org/10.1016/j.fuel.2018.06.099
- Gao, L.; Li, C.; Zhang, J.; Zhang, J.; Du, X.; Li, S.; Tang, L.; Chen, J.; Zeng, G. Fuel 2018, 215, 30. https://doi.org/10.1016/j.fuel.2017.11.008
- David, M.; Gollasch, S., In Springer Science & Business Media, David, M. Ed.; Academic Press: Izola Slovenia, 2015; pp 1-11.
- Song, L.; Yang, J.; Yu, S.; Xu, M.; Yao, L. J. Chem. Eng. 2019, 373, 767. https://doi.org/10.1016/j.cej.2019.05.094
- Bailey, D.; Solomon, G. Environ. Impact Assess. Rev. 2004, 24, 749. https://doi.org/10.1016/j.eiar.2004.06.005
- Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Fuel Process. Technol. 2007, 88, 817. https://doi.org/10.1016/j.fuproc.2007.04.001
- Filtschew, A.; Hess, C. Appl. Catal. B: Environ. 2018, 237, 1066. https://doi.org/10.1016/j.apcatb.2018.06.058
- Maiboom, A.; Tauzia, X.; Hetet, J. F. Energy. 2008, 33, 22. https://doi.org/10.1016/j.energy.2007.08.010
- Lin, F.; Wang, Z.; Ma, Q.; He, Y.; Whiddon, R.; Zhu, Y.; Liu, J. Energy Fuels. 2016, 30, 5101. https://doi.org/10.1021/acs.energyfuels.6b00824
- Mok, Y. S.; Lee, H. Fuel Process. Technol. 2006, 87, 591. https://doi.org/10.1016/j.fuproc.2005.10.007
- Wang, H.; Zhuang, Z.; Sun, C. J. Environ. Sci. 2016, 41, 51. https://doi.org/10.1016/j.jes.2015.05.015
- Wang, Z.; Zhou, J.; Wei, L.; Wen, Z. C.; Cen, K. F. Pro. CSEE. 2007, 27, 1.
- Wang, Z.; Cen, K.; Zhou, J.; Fan, J. Simultaneous Multi-pollutants Removal in Flue Gas by Ozone. Academic Press: Zhejiang University Press: Hangzhou, China, 2014.
- Wang, Z.; Zhou, J.; Fan, J.; Cen, K. Energ. Fuel 2006, 20, 2432. https://doi.org/10.1021/ef0603176
- Ma, S. C.; Min, S.; Ma, J.X.; Jin, X.; Yi, Z. Environ. Sci. 2009, 30, 3461.
- Ma, S.; Su, M.; Sun, Y.; Jin, X. Pro. CSEE. 2010, 30, 81.
- Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976. https://doi.org/10.1016/j.scitotenv.2010.06.001
- Ma, B.; Li, X.; Hu, Z.; Jian, S.; Zhang, P. J. Wuhan Univ. Technol. 2004, 26, 33.
- Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168. https://doi.org/10.1063/1.1732944
- Bhuiyan, L. B.; William, L.; Sum, H. J. Chem. Phys. 1983, 78, 5052. https://doi.org/10.1063/1.445373
- Borinaga, M.; Errea, I.; Calandra, M.; Mauri, F.; Bergara, A. Phys. Rev. B. 2016, 93, 174308. https://doi.org/10.1103/physrevb.93.174308
- Eslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432. https://doi.org/10.1063/1.472571
- Krems, R.; Nordholm, S. A. Z. Phys. Chem. 2000, 214, 1467.
- Panek, P. T.; Jacob, C. R. J. Phys. Chem. Lett. 2016, 7, 3084. https://doi.org/10.1021/acs.jpclett.6b01451
- Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432. https://doi.org/10.1063/1.472571
- Ramirez, R.; Chacon, E.; Herrero, C. P. Phys. Rev. B 2016, 93, 1.
- Sean, A. C.; Dowell, M. J. Mol. Struct. 2006, 770, 119. https://doi.org/10.1016/j.theochem.2006.05.037
- Song, K.; Hase, W. L. J. Chem. Phys. 1999, 110, 6198. https://doi.org/10.1063/1.478525
- Yao, L.; Lin, S. H. Sci. China Ser. B 2008, 51, 1146. https://doi.org/10.1007/s11426-008-0125-1
- Hao, Y.; Pan, X.; Song, L.; Ding,Y.; Xia, W.; Wang, S.; Yu, H.; Kang, L.; Yao, L. Can. J. Chem. 2017, 95, 1064. https://doi.org/10.1139/cjc-2017-0216
- Yu, H.; Xia, W.; Song, L.; Ding, Y.; Hao, Y.; Kang, L.; Yao, L. Acta Phys. Chim. Sin. 2017, 33, 2207.
- Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory. Comput. 2010, 6, 2115. https://doi.org/10.1021/ct100212p
- Zhao, Y.; Truhlar, D. G. Theory. Chem. Account. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
- Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A. 2007, 111, 6722. https://doi.org/10.1021/jp069012i
- Yao, L.; Liu, Y. L. Mode. Phys. Lett. B 2008, 22, 3043. https://doi.org/10.1142/S0217984908017552
- Jinko, K.; Nicholas, R.; James, P.; Kunal, K.; Daniela, S. M.; Henry, E. C. J. Systemics, Cybernetics Informatics. 2009, 1.
- Donovan, R. J.; Husain, D. Chem. Rev. 1970, 70, 489. https://doi.org/10.1021/cr60266a003
- Forst, W. Chem. Rev. 1971, 71, 339. https://doi.org/10.1021/cr60272a001
- Forst, W. In Theory of Unimolecular Reactions; Academic Press: New York, U. S. A., 1973.
- Eyring, H.; Lin, S. H.; Lin, S. M. In Basic Chemical Kinetics; A Wiley-interscience Publication: New York, U.S.A., 1980.
- Baer, T.; Hase, W. L. In Unimolecular Reaction Dynamics: Theory and Experiments. Oxford University Press: New York, U.S.A., 1996.
- Gilbert, R. G.; Smith, S. C. In Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
- Yao, L., Gao, D., Yu, H., Xia, W. Chem. Phys. Lett. 2020, 751, 1.
- Laidler, K. J. J. Chem. Educ. 1984, 61, 494. https://doi.org/10.1021/ed061p494
- Zhao, R.; Gao, D.; Pan, X.; Xia, W.; Yu, H.; Yu, S.; Yao, L. Chem. Phys. Lett. 2018, 703, 97. https://doi.org/10.1016/j.cplett.2018.05.018
- Tsang, W.; Herron, J. T. J. Phys. Chem. 1991, 20, 609.
- Cobos, C. J.; Troe, J. J. Chem. Phys. 1985, 83, 1010. https://doi.org/10.1063/1.449464
- Dumas, J. L. Bull. Soc. Chim. Fr. 1976, 1, 658.
- Julio, P. G.; Ignacio, N. G. J. Phys. Chem. A 2002, 106, 10302. https://doi.org/10.1021/jp020422q
- DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. L. Chemical Kinetic and Photochemical Data for Use in Stratospheric Modeling: Evaluation No. 11 of the NASA Panel for Data Evaluation; JPL Publication 94-26: 1994.
- Borders, R. A.; Birks, J. W. J. Phys. Chem. 1982, 86, 3295. https://doi.org/10.1021/j100214a007
- Last, I.; Aguilar, A.; Sayos, R.; Gonzalez, M.; Gilibert, M. J. Phys. Chem. 1997, 101, 1206. https://doi.org/10.1021/jp961847d
- Liu, Y.; Wang, Y.; Zhu, Z.; Zhang, X. Z.; Sun, J. F. J. At. Mol. Phys. 2002, 19, 19.
- Trung, Q. L.; Mackay, D.; Hirata, A.; Trass, O. Combust. Sci. Technol. 1975, 10, 155. https://doi.org/10.1080/00102207508946666
- Freedman, E.; Daiber, J. W. J. Chem. Phys. 1961, 34, 1271. https://doi.org/10.1063/1.1731731
- Yuan, E. L.; Slaughter, J. I.; Koerner, W. E.; Daniels, F. J. Phys. Chem. 1959, 63, 952. https://doi.org/10.1021/j150576a042
- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. 1992, 21, 1125.
- Ashmore, P. G.; Burnett, M. G. J. Chem. Soc. Faraday Trans. 2 1962, 58, 253. https://doi.org/10.1039/tf9625800253
- Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. Int. J. Chem. Kinet. 1996, 28, 693. https://doi.org/10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q
- Borisov, A. A.; Skachkov, G. I.; Oguryaev, A. A. Kinet. Catal. 1973, 14, 1.
- Fisburne, E. S.; Edse, R. J. Chem. Phys. 1964, 41, 1297. https://doi.org/10.1063/1.1726063
- Gvozdev, A. A.; Nesterenko, V. B.; Nichipor, G. V.; Trubnikov, V. Navuk BSSR Ser. Fiz. Energ. Navuk. 1979, 73, 1.