DOI QR코드

DOI QR Code

Theoretical Researches of Kinetics and Anharmonic Effect for the Reactions Related to NO in the Ozone Denitration Process

  • Received : 2021.02.02
  • Accepted : 2021.03.05
  • Published : 2021.06.20

Abstract

For studying the reaction mechanism of the reactions related to NO in the ozone denitration reactions, the harmonic and anharmonic rate constants were calculated by the transition state (TS) theory and Yao and Lin (YL) method. According to above calculations, the reactions of NO with O3 and NO3 play an essential role, and the kinetic parameters considering anharmonic effect were fitted. Furthermore, the rate constants were up as temperature increasing, and the tendencies of high temperature were more gradual than the low temperature. The research will provide theoretical basis for the ozone denitration reactions.

Keywords

Acknowledgement

This work was supported by the Major Research plan of the National Natural Science Foundation of China (Grant No.91441132). And the Publication cost of this paper was supported by the Korean Chemical Society.

References

  1. Guo, L.; Han, C.; Zhang, S.; Zhong, Q.; Ding, J.; Zhang, B.; Zeng, Y. Fuel 2018, 233, 769. https://doi.org/10.1016/j.fuel.2018.06.099
  2. Gao, L.; Li, C.; Zhang, J.; Zhang, J.; Du, X.; Li, S.; Tang, L.; Chen, J.; Zeng, G. Fuel 2018, 215, 30. https://doi.org/10.1016/j.fuel.2017.11.008
  3. David, M.; Gollasch, S., In Springer Science & Business Media, David, M. Ed.; Academic Press: Izola Slovenia, 2015; pp 1-11.
  4. Song, L.; Yang, J.; Yu, S.; Xu, M.; Yao, L. J. Chem. Eng. 2019, 373, 767. https://doi.org/10.1016/j.cej.2019.05.094
  5. Bailey, D.; Solomon, G. Environ. Impact Assess. Rev. 2004, 24, 749. https://doi.org/10.1016/j.eiar.2004.06.005
  6. Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Fuel Process. Technol. 2007, 88, 817. https://doi.org/10.1016/j.fuproc.2007.04.001
  7. Filtschew, A.; Hess, C. Appl. Catal. B: Environ. 2018, 237, 1066. https://doi.org/10.1016/j.apcatb.2018.06.058
  8. Maiboom, A.; Tauzia, X.; Hetet, J. F. Energy. 2008, 33, 22. https://doi.org/10.1016/j.energy.2007.08.010
  9. Lin, F.; Wang, Z.; Ma, Q.; He, Y.; Whiddon, R.; Zhu, Y.; Liu, J. Energy Fuels. 2016, 30, 5101. https://doi.org/10.1021/acs.energyfuels.6b00824
  10. Mok, Y. S.; Lee, H. Fuel Process. Technol. 2006, 87, 591. https://doi.org/10.1016/j.fuproc.2005.10.007
  11. Wang, H.; Zhuang, Z.; Sun, C. J. Environ. Sci. 2016, 41, 51. https://doi.org/10.1016/j.jes.2015.05.015
  12. Wang, Z.; Zhou, J.; Wei, L.; Wen, Z. C.; Cen, K. F. Pro. CSEE. 2007, 27, 1.
  13. Wang, Z.; Cen, K.; Zhou, J.; Fan, J. Simultaneous Multi-pollutants Removal in Flue Gas by Ozone. Academic Press: Zhejiang University Press: Hangzhou, China, 2014.
  14. Wang, Z.; Zhou, J.; Fan, J.; Cen, K. Energ. Fuel 2006, 20, 2432. https://doi.org/10.1021/ef0603176
  15. Ma, S. C.; Min, S.; Ma, J.X.; Jin, X.; Yi, Z. Environ. Sci. 2009, 30, 3461.
  16. Ma, S.; Su, M.; Sun, Y.; Jin, X. Pro. CSEE. 2010, 30, 81.
  17. Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976. https://doi.org/10.1016/j.scitotenv.2010.06.001
  18. Ma, B.; Li, X.; Hu, Z.; Jian, S.; Zhang, P. J. Wuhan Univ. Technol. 2004, 26, 33.
  19. Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168. https://doi.org/10.1063/1.1732944
  20. Bhuiyan, L. B.; William, L.; Sum, H. J. Chem. Phys. 1983, 78, 5052. https://doi.org/10.1063/1.445373
  21. Borinaga, M.; Errea, I.; Calandra, M.; Mauri, F.; Bergara, A. Phys. Rev. B. 2016, 93, 174308. https://doi.org/10.1103/physrevb.93.174308
  22. Eslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432. https://doi.org/10.1063/1.472571
  23. Krems, R.; Nordholm, S. A. Z. Phys. Chem. 2000, 214, 1467.
  24. Panek, P. T.; Jacob, C. R. J. Phys. Chem. Lett. 2016, 7, 3084. https://doi.org/10.1021/acs.jpclett.6b01451
  25. Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432. https://doi.org/10.1063/1.472571
  26. Ramirez, R.; Chacon, E.; Herrero, C. P. Phys. Rev. B 2016, 93, 1.
  27. Sean, A. C.; Dowell, M. J. Mol. Struct. 2006, 770, 119. https://doi.org/10.1016/j.theochem.2006.05.037
  28. Song, K.; Hase, W. L. J. Chem. Phys. 1999, 110, 6198. https://doi.org/10.1063/1.478525
  29. Yao, L.; Lin, S. H. Sci. China Ser. B 2008, 51, 1146. https://doi.org/10.1007/s11426-008-0125-1
  30. Hao, Y.; Pan, X.; Song, L.; Ding,Y.; Xia, W.; Wang, S.; Yu, H.; Kang, L.; Yao, L. Can. J. Chem. 2017, 95, 1064. https://doi.org/10.1139/cjc-2017-0216
  31. Yu, H.; Xia, W.; Song, L.; Ding, Y.; Hao, Y.; Kang, L.; Yao, L. Acta Phys. Chim. Sin. 2017, 33, 2207.
  32. Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory. Comput. 2010, 6, 2115. https://doi.org/10.1021/ct100212p
  33. Zhao, Y.; Truhlar, D. G. Theory. Chem. Account. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  34. Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A. 2007, 111, 6722. https://doi.org/10.1021/jp069012i
  35. Yao, L.; Liu, Y. L. Mode. Phys. Lett. B 2008, 22, 3043. https://doi.org/10.1142/S0217984908017552
  36. Jinko, K.; Nicholas, R.; James, P.; Kunal, K.; Daniela, S. M.; Henry, E. C. J. Systemics, Cybernetics Informatics. 2009, 1.
  37. Donovan, R. J.; Husain, D. Chem. Rev. 1970, 70, 489. https://doi.org/10.1021/cr60266a003
  38. Forst, W. Chem. Rev. 1971, 71, 339. https://doi.org/10.1021/cr60272a001
  39. Forst, W. In Theory of Unimolecular Reactions; Academic Press: New York, U. S. A., 1973.
  40. Eyring, H.; Lin, S. H.; Lin, S. M. In Basic Chemical Kinetics; A Wiley-interscience Publication: New York, U.S.A., 1980.
  41. Baer, T.; Hase, W. L. In Unimolecular Reaction Dynamics: Theory and Experiments. Oxford University Press: New York, U.S.A., 1996.
  42. Gilbert, R. G.; Smith, S. C. In Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
  43. Yao, L., Gao, D., Yu, H., Xia, W. Chem. Phys. Lett. 2020, 751, 1.
  44. Laidler, K. J. J. Chem. Educ. 1984, 61, 494. https://doi.org/10.1021/ed061p494
  45. Zhao, R.; Gao, D.; Pan, X.; Xia, W.; Yu, H.; Yu, S.; Yao, L. Chem. Phys. Lett. 2018, 703, 97. https://doi.org/10.1016/j.cplett.2018.05.018
  46. Tsang, W.; Herron, J. T. J. Phys. Chem. 1991, 20, 609.
  47. Cobos, C. J.; Troe, J. J. Chem. Phys. 1985, 83, 1010. https://doi.org/10.1063/1.449464
  48. Dumas, J. L. Bull. Soc. Chim. Fr. 1976, 1, 658.
  49. Julio, P. G.; Ignacio, N. G. J. Phys. Chem. A 2002, 106, 10302. https://doi.org/10.1021/jp020422q
  50. DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. L. Chemical Kinetic and Photochemical Data for Use in Stratospheric Modeling: Evaluation No. 11 of the NASA Panel for Data Evaluation; JPL Publication 94-26: 1994.
  51. Borders, R. A.; Birks, J. W. J. Phys. Chem. 1982, 86, 3295. https://doi.org/10.1021/j100214a007
  52. Last, I.; Aguilar, A.; Sayos, R.; Gonzalez, M.; Gilibert, M. J. Phys. Chem. 1997, 101, 1206. https://doi.org/10.1021/jp961847d
  53. Liu, Y.; Wang, Y.; Zhu, Z.; Zhang, X. Z.; Sun, J. F. J. At. Mol. Phys. 2002, 19, 19.
  54. Trung, Q. L.; Mackay, D.; Hirata, A.; Trass, O. Combust. Sci. Technol. 1975, 10, 155. https://doi.org/10.1080/00102207508946666
  55. Freedman, E.; Daiber, J. W. J. Chem. Phys. 1961, 34, 1271. https://doi.org/10.1063/1.1731731
  56. Yuan, E. L.; Slaughter, J. I.; Koerner, W. E.; Daniels, F. J. Phys. Chem. 1959, 63, 952. https://doi.org/10.1021/j150576a042
  57. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. 1992, 21, 1125.
  58. Ashmore, P. G.; Burnett, M. G. J. Chem. Soc. Faraday Trans. 2 1962, 58, 253. https://doi.org/10.1039/tf9625800253
  59. Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. Int. J. Chem. Kinet. 1996, 28, 693. https://doi.org/10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q
  60. Borisov, A. A.; Skachkov, G. I.; Oguryaev, A. A. Kinet. Catal. 1973, 14, 1.
  61. Fisburne, E. S.; Edse, R. J. Chem. Phys. 1964, 41, 1297. https://doi.org/10.1063/1.1726063
  62. Gvozdev, A. A.; Nesterenko, V. B.; Nichipor, G. V.; Trubnikov, V. Navuk BSSR Ser. Fiz. Energ. Navuk. 1979, 73, 1.