Acknowledgement
Authors appreciate the supports from, National Key Research and Development Program of China (Grant No.2020YFA0710901), National Natural Science Foundation of China (Grant No. 1202395), Science Foundation of Hunan Province (Grant No. 2019JJ50790), and Start-up funding of Central South University of China.
References
- Aa, A., Mm, A., Sj, A., Oyb, C., Aa, A. and Ma, A. (2020), "Cfd numerical simulation of standalone sand screen erosion due to gas-sand flow", J. Nat. Gas Sci. Eng., 85. https://doi.org/10.1016/j.jngse.2020.103706.
- Anderson, J.D. (1995), Computational Fluid Dynamics: The Basics With Applications. McGraw-Hill, New York, U.S.A.
- Finnie, I. (1960), Erosion of Surfaces by Solid Particles[J] Wear. 3. 87-103. https://doi.org/10.1016/0043-1648(60)90055-7
- Hunter, S.C. (1957), "Energy absorbed by elastic waves during impact", J. Mech. Phys. Solids, 5(3), 162-171. https://doi.org/10.1016/0022-5096(57)90002-9.
- Jiang, F.Q., Li, Y., Li, K.C., Cheng, J.J., Xue, C.X. and Ge, S.C. (2010), "Study on structural characteristics of Gobi wind sand flow in 100 km wind area along Lan-xin railway", J. China Railway Soc., 3. https://doi.org/10.3969/j.issn.1001-8360.2010.03.019
- Ke, S.T., Dong, Y.F., Zhu, R.K. and Wang, T.G. (2020), "Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine", Wind Struct., 30(4), 433-450. https://doi.org/10.12989/was.2020.30.4.433.
- Khan, R., Ya, H.H., Pao, W., Abdullah, M. and Dzubir, F.A. (2020), "Influence of sand fines transport velocity on erosion-corrosion phenomena of carbon steel 90-degree elbow", Metals -Open Access Metallurgy J., 10(5), 626. https://doi.org/10.3390/met10050626.
- Liu, T.H. and Zhang, J. (2013), "Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind", J. Central South Univ., 20(3), 830-836. https://doi.org/10.1007/s11771-013-1554-3
- McLaskeya, G.C. and Glaser, S.D. (2010), "Hertzian impact: Experimental study of the force pulse and resulting stress waves", J. Acoustic. Soc. Amer., 128(3), 1087-1096. https://doi.org/10.1121/1.3466847.
- Moris, S.A. and Alexander, A.J. (1972), "An investigation of particle trajectories in two-phase flow systems", J. Fluid Mech., 55(2), 193-208. https://doi.org/10.1017/S0022112072001806.
- Niu, J., Liang, X. and Zhou, D. (2016), "Experimental study on the effect of Reynolds number on aerodynamic performance of high-speed train with and without yaw angle", J. Wind Eng. Ind. Aerod., 157, 36-46. https://doi.org/10.1016/j.jweia.2016.08.007.
- Niu, J., Zhou, D. and Wang, Y. (2018), "Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind", J. Wind Eng. Ind. Aerod., 182, 1-15. https://doi.org/10.1016/j.jweia.2018.09.011.
- Paz, C., Suarez, E., Gil, C. and Concheiro, M. (2015), "Numerical study of the impact of windblown sand particles on a high-speed train", J. Wind Eng. Ind. Aerod., 145, 87-93. https://doi.org/10.1016/j.jweia.2015.06.008.
- Sarafrazi, V. and Talaee, M.R. (2019), "Numerical simulation of sand transfer in wind storm using the eulerian-lagrangian two-phase flow model", Europ. Phys. J. E., 42(4), https://doi.org/10.1140/epje/i2019-11809-8.
- Smyth, T.A. (2016), "A review of computational fluid dynamics (cfd) airflow modelling over aeolian landforms", Aeolian Res., 22, 153-164. https://doi.org/10.1016/j.aeolia.2016.07.003.
- Wang, T.T., Jiang, C.W., Gao, Z.X. and Lee, C.H. (2017), "Numerical simulation of sand load applied on high-speed train in sand environment", J. Central South Univ., 24(2), 442-447. https://doi.org/10.1007/s11771-017-3446-4.
- Xin, L.G., Cheng, J.J., Chen, B.Y. and Weng, R. (2018), "The motion rule of sand particles under control of the sand transportation engineering", Wind Struct., 27(4), 213-221. https://doi.org/10.12989/was.2018.27.4.213.
- Xiong, H.B., Yu, W.G., Chen, D.W. and Shao, X.M. (2011), "Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms", J. Zhejiang Univ. Sci. A, 12(12), 971-978. https://doi.org/10.1631/jzus.A11GT005.