DOI QR코드

DOI QR Code

Buckling of porosity-dependent bi-directional FG nanotube using numerical method

  • Wang, Haiquan (Chemistry and Chemical Engineering & Environmental College, Weifang University) ;
  • Zandi, Yousef (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Gholizadeh, Morteza (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Issakhov, Alibek (Al-Farabi Kazakh National University)
  • Received : 2021.01.30
  • Accepted : 2021.04.21
  • Published : 2021.05.25

Abstract

This article focused on studying the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity based on first shear deformation and higher-order theory of tube. The nano-scale tube is simulated based on the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. The parametric study is performed to study the effects of different parameters such as axial and radial FG power indexes, porosity parameter, nonlocal gradient strain parameters on the buckling behavior of di-dimensional functionally graded porous tube.

Keywords

References

  1. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279- 1299. https://doi.org/10.1016/0020-7225(92)90141-3.
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  3. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput. https://doi.org/10.1007/s00366-020-01144-2.
  4. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020b), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput. https://doi.org/10.1007/s00366-020-01088-7.
  5. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  6. Amiri, A., Mohammadimehr, M. and Anvari, M. (2020), "Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets", Appl. Math. Mech., 41(7), 1027-1038. https://doi.org/10.1007/s10483-020-2627-7.
  7. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x.
  8. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278. http://doi.org/10.12989/anr.2018.6.3.257.
  9. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A., 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  10. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277.
  11. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. http://doi.org/10.12989/anr.2018.6.4.339.
  12. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
  13. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. http://doi.org/10.12989/anr.2019.7.5.337.
  14. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. http://doi.org/10.12989/anr.2015.3.1.029.
  15. Bian, L.C. and Wang, Y.W. (2020), "Temperature-related study on buckling properties of double-walled carbon nanotubes", Eur. J. Mech.-A, 80, 103875. https://doi.org/10.1016/j.euromechsol.2019.103875.
  16. Bravo, I., Garcia-Mendiola, T., Revenga-Parra, M., Pariente, F. and Lorenzo, E. (2015), "Diazonium salt click chemistry based multiwall carbon nanotube electrocatalytic platforms", Sensor. Actuat. B-Chem., 211, 559-568. https://doi.org/10.1016/j.snb.2015.01.076.
  17. Cao, L. (2020), "Changing port governance model: Port spatial structure and trade efficiency", J. Coastal Res., 95(SI), 963-968. https://doi.org/10.2112/si95-187.1.
  18. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. http://doi.org/10.12989/anr.2015.3.4.193.
  19. Chen, X., Wang, D., Wang, T., Yang, Z., Zou, X., Wang, P., Luo, W., Li, Q., Liao, L., Hu, W. and Wei, Z. (2019), "Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level", ACS Appl. Mater. Interf., 11(36), 33188-33193. https://doi.org/10.1021/acsami.9b07891.
  20. Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W., Wang, B., Sewvandi, G.A., Yang, D. and Hu, D. (2020), "Additive manufacturing of piezoelectric materials", Adv. Funct. Mater., 30(52), 2005141. https://doi.org/10.1002/adfm.202005141.
  21. Duan, Z., Li, C., Zhang, Y., Dong, L., Bai, X., Yang, M., Jia, D., Li, R., Cao, H. and Xu, X. (2020a), "Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication", Chinese J. Aeronaut., https://doi.org/10.1016/j.cja.2020.04.029.
  22. Duan, Z., Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., Jia, D., Li, R. and Liu, Z. (2020b), "Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations", Int. J. Adv. Manuf. Tech., 107(3), 1277-1296. https://doi.org/10.1007/s00170-020-04969-9.
  23. Duan, Z., Li, C., Ding, W., Zhang, Y., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Mao, C., Li, H.N., Kumar, G.M., Said, Z., Debnath, S., Jamil, M. and Ali, H.M. (2021), "Milling force model for aviation aluminum alloy: Academic insight and perspective analysis", Chinese J. Mech. Eng., 34(1), 18. https://doi.org/10.1186/s10033-021-00536-9.
  24. Ebrahimi, F. and Barati, M.R. (2019), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., Int. J., 7(1), 63-75. http://doi.org/10.12989/anr.2019.7.1.063.
  25. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  26. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020a), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsys. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9.
  27. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020b), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  28. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
  29. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12. http://doi.org/10.12989/anrr.2017.5.1.001.
  30. Eltaher, M., Khater, M., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. http://doi.org/10.12989/anr.2016.4.1.051.
  31. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. http://doi.org/10.12989/anr.2019.7.1.039.
  32. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  33. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743.
  34. Foroutan, K., Carrera, E. and Ahmadi, H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech.-A., 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
  35. Gao, T., Li, C., Zhang, Y., Yang, M., Jia, D., Jin, T., Hou, Y. and Li, R. (2019), "Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants", Tribol. Int., 131, 51-63. https://doi.org/10.1016/j.triboint.2018.10.025.
  36. Gao, T., Li, C., Jia, D., Zhang, Y., Yang, M., Wang, X., Cao, H., Li, R., Ali, H.M. and Xu, X. (2020a), "Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication", J. Clean. Prod., 277, 123328. https://doi.org/10.1016/j.jclepro.2020.123328.
  37. Gao, T., Zhang, X., Li, C., Zhang, Y., Yang, M., Jia, D., Ji, H., Zhao, Y., Li, R., Yao, P. and Zhu, L. (2020b), "Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding", J. Manuf. Process., 51, 44-61. https://doi.org/10.1016/j.jmapro.2020.01.024.
  38. Garcia-Macias, E., Rodriguez-Tembleque, L., Castro-Triguero, R. and Saez, A. (2017), "Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear", Compos. Part B-Eng., 108, 243-256. https://doi.org/10.1016/j.compositesb.2016.10.002.
  39. Genoese, A., Genoese, A. and Salerno, G. (2020), "Buckling and post-buckling analysis of single wall carbon nanotubes using molecular mechanics", Appl. Math. Model., 83, 777-800. https://doi.org/10.1016/j.apm.2020.03.012.
  40. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2019), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2019.1705166.
  41. Ghabussi, A., Asgari Marnani, J. and Rohanimanesh, M.S. (2020a), "Improving seismic performance of portal frame structures with steel curved dampers", Structures, 24, 27-40. https://doi.org/10.1016/j.istruc.2019.12.025.
  42. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020b), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  43. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  44. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nanoturbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  45. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A., 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  46. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  47. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel. Compos. Struct., Int. J., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  48. Ghadiri, M., Shafiei, N. and Hossein, A.S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  49. Goel, M., Harsha, S.P., Mishra, M.P. and Mishra, R.K. (2020), "Buckling failure analysis of defective carbon nanotubes using molecular dynamics simulation", J. Fail. Anal. Prev., 20(3), 868-881. https://doi.org/10.1007/s11668-020-00886-x.
  50. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1.
  51. Huang, B., Li, C., Zhang, Y., Ding, W., Yang, M., Yang, Y., Zhai, H., Xu, X., Wang, D., Debnath, S., Jamil, M., Li, H.N., Ali, H.M., Gupta, M.K. and Said, Z. (2020), "Advances in fabrication of ceramic corundum abrasives based on sol-gel process", Chinese J. Aeronaut., https://doi.org/10.1016/j.cja.2020.07.004.
  52. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput. https://doi.org/10.1007/s00366-021-01395-7.
  53. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  54. Jam, J. and Kiani, Y. (2015), "Buckling of pressurized functionally graded carbon nanotube reinforced conical shells", Compos. Struct., 125, 586-595. https://doi.org/10.1016/j.compstruct.2015.02.052.
  55. Jermsittiparsert, K., Ghabussi, A., Forooghi, A., Shavalipour, A., Habibi, M., won Jung, D. and Safa, M. (2020), "Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator", Mech. Based Des. Struct., 1-23. https://doi.org/10.1080/15397734.2020.1748052.
  56. Kar, K., Kumar, P., Iyengar, N. and Agnihotri, P. (1813), "Carbon nanotube and nanoparticles coated carbon fiber reinforced polymer hybrid composite with improved thermomechanical properties and a process for preparation thereof", Indian Patent.
  57. Lei, Z., Liew, K. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  58. Li, H., Tang, J., Kang, Y., Zhao, H., Fang, D., Fang, X., Chen, R. and Wei, Z. (2018), "Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires", Appl. Phys. Lett., 113(23), 233104. https://doi.org/10.1063/1.5053844.
  59. Li, X., Feng, Y., Liu, B., Yi, D., Yang, X., Zhang, W., Chen, G., Liu, Y. and Bai, P. (2019), "Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding", J. Alloy. Compd., 788, 485-494. https://doi.org/10.1016/j.jallcom.2019.02.223.
  60. Li, Y., Jiang, J.-W., Zhu, W. and Chang, T. (2020), "Buckling of cylindrical shells subjected to a finite number of lateral loads: Application to single-walled carbon nanotubes", Nanotechnology, 31(20), 205711. https://doi.org/10.1088/1361-6528/ab72b8.
  61. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://droi.org/10.1016/j.jmps.2015.02.001.
  62. Liu, M., Li, C., Cao, C., Wang, L., Li, X., Che, J., Yang, H., Zhang, X., Zhao, H., He, G. and Liu, X. (2021), "Walnut fruit processing equipment: Academic insights and perspectives", Food Eng. Rev., https://doi.org/10.1007/s12393-020-09273-6.
  63. Lu, H., Zhu, Y., Yuan, Y., He, L., Zheng, B., Zheng, X., Liu, C. and Du, H. (2021), "LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries", J. Mater. Sci.: Mater. El., 32(5), 5898-5906. https://doi.org/10.1007/s10854-021-05310-0.
  64. Luo, H., Shi, Z., Li, N., Gu, Z. and Zhuang, Q. (2001), "Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode", Anal. Chem., 73(5), 915-920. https://doi.org/10.1021/ac000967l.
  65. Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.
  66. Malikan, M. (2020), "On the plastic buckling of curved carbon nanotubes", Theor. Appl. Mech. Lett., 10(1), 46-56. https://doi.org/10.1016/j.taml.2020.01.004.
  67. Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Express, https://doi.org/10.1088/2053-1591/ab691c.
  68. Malikan, M., Eremeyev, V.A. and Sedighi, H.M. (2020), "Buckling analysis of a non-concentric double-walled carbon nanotube", Acta Mechanica, 231(12), 5007-5020. https://doi.org/10.1007/s00707-020-02784-7.
  69. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  70. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. http://doi.org/10.12989/anr.2019.7.3.181.
  71. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
  72. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017a), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stresses, 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  73. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017b), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  74. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017c), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A., 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  75. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L.K. (2019), "Buckling and Frequency Responses of a Graphene Nanoplatelet Reinforced Composite Microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  76. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput. https://doi.org/10.1007/s00366-020-00976-2.
  77. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.
  78. Morasaei, A., Ghabussi, A., Aghlmand, S., Yazdani, M., Baharom, S. and Assilzadeh, H. (2021), "Simulation of steel-concrete composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework", Eng. Comput. https://doi.org/10.1007/s00366-020-01228-z.
  79. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., Int. J., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
  80. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., Int. J., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
  81. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  82. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin. Wall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  83. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. http://doi.org/10.12989/anr.2019.7.2.089.
  84. Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  85. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  86. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  87. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016b), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  88. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Model., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  89. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  90. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. 10.1080/15376494.2017.1365982.
  91. Shams, S. and Soltani, B. (2017), "The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method", Polym. Compos., 38, E531-E541. https://doi.org/10.1002/pc.23814.
  92. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020a), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  93. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  94. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A., 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  95. Sui, M., Li, C., Wu, W., Yang, M., Ali, H.M., Zhang, Y., Jia, D., Hou, Y., Li, R. and Cao, H. (2021), "Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication", J. Therm. Sci. Eng. Applicat., 13(5), 051001. https://doi.org/10.1115/1.4049982.
  96. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. http://doi.org/10.12989/anr.2013.1.1.001.
  97. Uzun, B. and Civalek, O . (2019), "Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., Int. J., 7(2), 99-108. http://doi.org/10.12989/anr.2019.7.2.099.
  98. Wallace, J., Chen, D. and Shao, L. (2020), "Irradiation-enhanced torsional buckling capacity of carbon nanotube bundles", J. Appl. Phys., 128(19), 195902. https://doi.org/10.1063/5.0013229.
  99. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., Hou, Y. and Mao, C. (2016), "Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils", J. Clean. Prod., 127, 487-499. https://doi.org/10.1016/j.jclepro.2016.03.121.
  100. Wang, X., Li, C., Zhang, Y., Ding, W., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Said, Z., Debnath, S., Jamil, M. and Ali, H.M. (2020), "Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives", J. Manuf. Process., 59, 76-97. https://doi.org/10.1016/j.jmapro.2020.09.044.
  101. Wang, J.F., Cao, S.H. and Zhang, W. (2021a), "Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate", Eur. J. Mech.-A, 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
  102. Wang, P., Li, Z., Xie, Q., Duan, W., Zhang, X. and Han, H. (2021b), "A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength", J. Bionic Eng., 18(1), 55-64. https://doi.org/10.1007/s42235-021-0012-4.
  103. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118.
  104. Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. http://doi.org/10.12989/anr.2018.6.2.163.
  105. Yang, J. and Shen, H.-S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  106. Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., Jia, D., Li, R. and Liu, Z. (2021), "Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045", Int. J. Precis. Eng. Manuf.-Green Technol., https://doi.org/10.1007/s40684-021-00318-7.
  107. Zeighampour, H. and Tadi, B.Y. (2020), "Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation", Mol. Simulat., 46(4), 279-288. https://doi.org/10.1080/08927022.2019.1697817.
  108. Zghal, S., Trabelsi, S. and Dammak, F. (2020), "Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings", Mech. Based Des. Struct., 1-43. https://doi.org/10.1080/15397734.2020.1790387.
  109. Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding", Int. J. Mach. Tool. Manuf., 99, 19-33. https://doi.org/10.1016/j.ijmachtools.2015.09.003.
  110. Zhang, Y., Li, C., Ji, H., Yang, X., Yang, M., Jia, D., Zhang, X., Li, R. and Wang, J. (2017), "Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms", Int. J. Mach. Tool. Manuf., 122, 81-97. https://doi.org/10.1016/j.ijmachtools.2017.06.002.
  111. Zhang, K., Huo, Q., Zhou, Y.-Y., Wang, H.-H., Li, G.-P., Wang, Y.-W. and Wang, Y.-Y. (2019), "Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal", ACS Appl. Mater. Interf., 11(19), 17368-17374. https://doi.org/10.1021/acsami.9b01734.
  112. Zhang, J., Wu, W., Li, C., Yang, M., Zhang, Y., Jia, D., Hou, Y., Li, R., Cao, H. and Ali, H.M. (2020a), "Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti-6Al-4V", Int. J. Precis. Eng. Manuf.-Green Technol., 1-23. https://doi.org/10.1007/s40684-020-00268-6.
  113. Zhang, K., Yang, Z., Mao, X., Chen, X.-L., Li, H.-H. and Wang, Y.-Y. (2020b), "Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction", ACS Appl. Mater. Interf., 12(49), 55316-55323. https://doi.org/10.1021/acsami.0c18147.