DOI QR코드

DOI QR Code

공유자전거 시스템의 이용 예측을 위한 K-Means 기반의 군집 알고리즘

A K-Means-Based Clustering Algorithm for Traffic Prediction in a Bike-Sharing System

  • 김경옥 (서울과학기술대학교 산업공학과) ;
  • 이창환 (서울과학기술대학교 데이터사이언스학과)
  • 투고 : 2020.10.30
  • 심사 : 2021.02.23
  • 발행 : 2021.05.31

초록

최근 들어 공유자전거 시스템은 대중교통 이용이 어렵거나 불가능한 마지막 목적지까지의 거리인 "라스트 마일"을 해소하는 방안으로 주목받고 있다. 공유자전거 시스템에서는 자전거의 대여와 반납의 불균형으로 인해서 사용자가 원하는 시간에 원하는 대여소에서 자전거를 빌리거나 반납할 수 있는 문제가 자주 발생한다. 이에 자전거 재배치는 공유자전거 시스템을 효율적으로 운영하는데 매우 중요한 이슈이다. 자전거 재배치를 효율적이고 효과적으로 진행하기 위해서는 무엇보다 정확한 수요 예측이 이뤄져야 한다. 최근에는 대여소의 수요를 보다 정확하게 예측하기 위해 군집 기반의 수요 예측 모델을 활용하는 방법이 개발되고 있는데, 여기서는 군집 분석 단계가 매우 중요하다. 이 연구에서는 비결정적이고 수렴이 어려운 기존의 공유자전거 수요 예측을 위한 군집 방법의 단점을 극복하는 k-means 기반의 군집 알고리즘을 제안한다. 이 방법은 초기 중심점 방법을 활용하기 때문에 매번 동일한 결과를 얻을 수 있으며, 대여소의 시간별 반납/대여 비중을 이용하여 기존 방법과는 달리 이전 단계의 군집 결과를 필요로 하지 않아 반복해서 군집 분석을 수행할 필요가 없어 빠른 군집 분석이 가능한 장점이 있다.

Recently, a bike-sharing system (BSS) has become popular as a convenient "last mile" transportation. Rebalancing of bikes is a critical issue to manage BSS because the rents and returns of bikes are not balanced by stations and periods. For efficient and effective rebalancing, accurate traffic prediction is important. Recently, cluster-based traffic prediction has been utilized to enhance the accuracy of prediction at the station-level and the clustering step is very important in this approach. In this paper, we propose a k-means based clustering algorithm that overcomes the drawbacks of the existing clustering methods for BSS; indeterministic and hardly converged. By employing the centroid initialization and using the temporal proportion of the rents and returns of stations as an input for clustering, the proposed algorithm can be deterministic and fast.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1F1A1054496).

참고문헌

  1. M. Ricci, "Bike sharing: A review of evidence on impacts and processes of implementation and operation," Research in Transportation Business & Management, Vol.15, pp.28-38, 2015. https://doi.org/10.1016/j.rtbm.2015.03.003
  2. P. Bhardwaj and S. Gal, "The number of bike-sharing programs has doubled since 2014," [Internet] https://www.businessinsider.com/bike-sharing-programs-doubled-since-2014-public-bikes-charts-2018-7#:~:text=According to estimates and data,bikes available for public use.
  3. NACTO, "Shared Micromobility in the U.S.: 2018," 2019.
  4. J. C. Garcia-Palomares, J. Gutierrez, and M. Latorre, "Optimizing the location of stations in bike-sharing programs: A GIS approach," Applied Geography, Vol.35, No.1, pp.235-246, 2012. https://doi.org/10.1016/j.apgeog.2012.07.002
  5. M. Benchimol et al., "Balancing the stations of a self service 'bike hire' system," RAIRO Operations Research, Vol.45, No.1, pp.37-61, 2011. https://doi.org/10.1051/ro/2011102
  6. J. Liu, L. Sun, W. Chen, and H. Xiong, "Rebalancing Bike Sharing Systems," in Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.1005-1014, 2016.
  7. A. Singla, M. Santoni, G. Bartok, P. Mukerji, M. Meenen, and A. Krause, "Incentivizing Users for Balancing Bike Sharing Systems," in Proceedings of AAAI Conference on Artificial Intelligence, pp.723-729, 2015.
  8. C. Fricker and N. Gast, "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Vol.5, No.3, pp.261-291, 2016. https://doi.org/10.1007/s13676-014-0053-5
  9. A. Kaltenbrunner, R. Meza, J. Grivolla, J. Codina, and R. Banchs, "Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system," Pervasive and Mobile Computing, Vol.6, No.4, pp.455-466, 2010. https://doi.org/10.1016/j.pmcj.2010.07.002
  10. J. W. Yoon, F. Pinelli, and F. Calabrese, "Cityride: A Predictive Bike Sharing Journey Advisor," in Proceedings of IEEE International Conference on Mobile Data Management, pp.306-311, 2012.
  11. J. Froehlich, J. Neumann, and N. Oliver, "Sensing and Predicting the Pulse of the City through Shared Bicycling," in Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp.1420-1426, 2009.
  12. A. Faghih-Imani, N. Eluru, A. M. El-Geneidy, M. Rabbat, and U. Haq, "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Vol.41, pp. 306-314, 2014. https://doi.org/10.1016/j.jtrangeo.2014.01.013
  13. R. Giot and R. Cherrier, "Predicting bikeshare system usage up to one day ahead," in Proceedings of the IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems, pp.22-29, 2014.
  14. Y. Li and Y. Zheng, "Citywide Bike Usage Prediction in a Bike-Sharing System," IEEE Transactions on Knowledge and Data Engineering, Vol.32, No.6 pp.1079-1091, 2019. https://doi.org/10.1109/tkde.2019.2898831
  15. Y. Li, Y. Zheng, H. Zhang, and L. Chen, "Traffic prediction in a bike-sharing system," in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp.1-10, 2015.
  16. W. Jia, Y. Tan, L. Liu, J. Li, H. Zhang, and K. Zhao, "Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system," Knowledge-Based Systems, Vol.178, pp.84-97, 2019. https://doi.org/10.1016/j.knosys.2019.04.020
  17. L. Lin, Z. He, and S. Peeta, "Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach," Transportation Research Part C: Emerging Technologies, Vol.97, pp.258-276, 2018. https://doi.org/10.1016/j.trc.2018.10.011
  18. W. Jia, Y. Tan, and J. Li, "Hierarchical prediction based on two-level affinity propagation clustering for bikesharing system," IEEE Access, Vol.6, pp.45875-45885, 2018. https://doi.org/10.1109/access.2018.2865658
  19. Fang Yuan, Zeng-Hui Meng, Hong-Xia Zhang, and ChunRu Dong, "A new algorithm to get the initial centroids," in Proceedings of International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), Vol.2, pp.1191-1193, 2004.
  20. T. Su and J. Dy, "A Deterministic Method for Initializing K-Means Clustering," in Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, pp.784-786, 2004.
  21. F. Devillaine, M. Munizaga, and M. Trepanier, "Detection of Activities of Public Transport Users by Analyzing Smart Card Data," Transportation Research Record: Journal of the Transportation Research Board, Vol.2276, No.1, pp.48-55, 2012. https://doi.org/10.3141/2276-06
  22. L. Gong, X. Liu, L. Wu, and Y. Liu, "Inferring trip purposes and uncovering travel patterns from taxi trajectory data," Cartography and Geographic Information Science, Vol.43, No.2 pp.103-114, 2016. https://doi.org/10.1080/15230406.2015.1014424
  23. X. Liu, C. Kang, L. Gong, and Y. Liu, "Incorporating spatial interaction patterns in classifying and understanding urban land use," International Journal of Geographical Information Science, Vol.30, No.2, pp.334-350, 2016. https://doi.org/10.1080/13658816.2015.1086923
  24. Y. Liu, F. Wang, Y. Xiao, and S. Gao, "Urban land uses and traffic 'source-sink areas': Evidence from GPS-enabled taxi data in Shanghai," Landscape Urban Planning, Vol.106, No.1, pp.73-87, 2012. https://doi.org/10.1016/j.landurbplan.2012.02.012
  25. X. Liu, L. Gong, Y. Gong, and Y. Liu, "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Vol.43, pp.78-90, 2015. https://doi.org/10.1016/j.jtrangeo.2015.01.016
  26. A. Faghih-Imani and N. Eluru, "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Vol.54, pp.218-227, 2016. https://doi.org/10.1016/j.jtrangeo.2016.06.008
  27. K. Gebhart and R. B. Noland, "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Vol.41, No.6, pp.1205-1225, 2014. https://doi.org/10.1007/s11116-014-9540-7
  28. P. Lin, J. Weng, Q. Liang, D. Alivanistos, and S. Ma, "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Vol.20, No.1, pp.1-17, 2020. https://doi.org/10.1007/s11067-019-09465-6
  29. T. D. , N. Ovtracht, and B. F. d'Arcier, "Modeling Bike Sharing System using Built Environment Factors," Procedia CIRP, Vol.30, pp.293-298, 2015. https://doi.org/10.1016/j.procir.2015.02.156
  30. W. El-Assi, M. Salah Mahmoud, and K. Nurul Habib, "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Vol.44, No.3, pp.589-613, 2017. https://doi.org/10.1007/s11116-015-9669-z