DOI QR코드

DOI QR Code

ON AMPLIATION QUASIAFFINE TRANSFORMS OF OPERATORS

  • Ko, Eungil (Department of Mathematics Ewha Womans University)
  • Received : 2020.05.27
  • Accepted : 2021.03.10
  • Published : 2021.05.31

Abstract

In this paper, we study various connections of local spectral properties, invariant subspaces, and spectra when an operator S in 𝓛(𝓗) is an ampliation quasiaffine transform of an operator T in 𝓛(𝓗).

Keywords

Acknowledgement

The author wishes to thank the referee for a careful reading and valuable comments and suggestions for the original draft.

References

  1. P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
  2. E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. (3) 75 (1997), no. 2, 323-348. https://doi.org/10.1112/S0024611597000373
  3. C. Apostol, H. Bercovici, C. Foia,s, and C. Pearcy, Quasiaffine transforms of operators, Michigan Math. J. 29 (1982), no. 2, 243-255. http://projecteuclid.org/euclid.mmj/1029002677
  4. H. Bercovici, Operator theory and arithmetic in H, Mathematical Surveys and Monographs, 26, American Mathematical Society, Providence, RI, 1988. https://doi.org/10.1090/surv/026
  5. S. Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), no. 1, 88-90. https://doi.org/10.2307/2040373
  6. I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, Science Publishers, New York, 1968.
  7. R. G. Douglas, On the operator equation S*XT = X and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19-32.
  8. B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), no. 3, 338-345. https://doi.org/10.1007/BF01306546
  9. C. Foias and C. Pearcy, On the hyperinvariant subspace problem, J. Funct. Anal. 219 (2005), no. 1, 134-142. https://doi.org/10.1016/j.jfa.2004.04.003
  10. P. R. Halmos, A Hilbert Space Problem Book, second edition, Graduate Texts in Mathematics, 19, Springer-Verlag, New York, 1982.
  11. T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686. http://projecteuclid.org/euclid.ijm/1256065551 https://doi.org/10.1215/ijm/1256065551
  12. S. Jung, E. Ko, and J. E. Lee, On scalar extensions and spectral decompositions of complex symmetric operators, J. Math. Anal. Appl. 384 (2011), no. 2, 252-260. https://doi.org/10.1016/j.jmaa.2011.05.056
  13. S. Jung, E. Ko, and M.-J. Lee, On operators which are power similar to hyponormal operators, Osaka J. Math. 52 (2015), no. 3, 833-847. http://projecteuclid.org/euclid.ojm/1437137620
  14. I. B. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37 (2000), no. 4, 437-448. https://doi.org/10.1007/BF01192831
  15. I. B. Jung, E. Ko, and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), no. 1, 52-60. https://doi.org/10.1007/BF01202954
  16. R. Lange and S. W. Wang, New approaches in spectral decomposition, Contemporary Mathematics, 128, American Mathematical Society, Providence, RI, 1992. https://doi.org/10.1090/conm/128
  17. K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs. New Series, 20, The Clarendon Press, Oxford University Press, New York, 2000.
  18. B. S. Nagy and C. Foias, Injection of shifts into strict contractions, in Linear operators and approximation, II (Proc. Conf., Math. Res. Inst., Oberwolfach, 1974), 29-37. Internat. Ser. Numer. Math., 25, Birkhauser, Basel, 1974. https://doi.org/10.1007/978-3-0348-5991-2_3
  19. H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1973.
  20. J. G. Stampfli, A local spectral theory for operators. V. Spectral subspaces for hyponormal operators, Trans. Amer. Math. Soc. 217 (1976), 285-296. https://doi.org/10.2307/1997571
  21. D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, 10, Birkhauser Verlag, Basel, 1983. https://doi.org/10.1007/978-3-0348-5435-1