DOI QR코드

DOI QR Code

Verification of Effectiveness of Wearing Compression Pants in Wearable Robot Based on Bio-signals

생체신호에 기반한 웨어러블 로봇 내 부분 압박 바지 착용 시 효과 검증

  • Park, Soyoung (Dept. of Clothing & Textiles, Chungnam National University) ;
  • Lee, Yejin (Dept. of Clothing & Textiles, Chungnam National University)
  • Received : 2020.10.21
  • Accepted : 2020.12.02
  • Published : 2021.04.30

Abstract

In this study, the effect of wearing functional compression pants is verified using a lower-limb wearable robot through a bio-signal analysis and subjective fit evaluation. First, the compression area to be applied to the functional compression pants is derived using the quad method for nine men in their 20s. Subsequently, functional compression pants are prepared, and changes in Electroencephalogram (EEG) and Electrocardiogram (ECG) signals when wearing the functional compression and normal regular pants inside a wearable robot are measured. The EEG and ECG signals are measured with eyes closed and open. Results indicate that the Relative alpha (RA) and Relative gamma wave (RG) of the EEG signal differ significantly, resulting in increased stability and reduced anxiety and stress when wearing the functional compression pants. Furthermore, the ECG analysis results indicate statistically significant differences in the Low frequency (LF)/High frequency (HF) index, which reflect the overall balance of the autonomic nervous system and can be interpreted as feeling comfortable and balanced when wearing the functional compression pants. Moreover, subjective sense is discovered to be effective in assessing wear fit, ease of movement, skin friction, and wear comfort when wearing the functional compression pants.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1A2C1005598).

References

  1. ASTM International. (2020). ASTM D2594-20, Standard test method for stretch properties of knitted fabrics having low power. ASTM International. Retrieved from https://www.astm.org/Standards/D2594.htm
  2. Bang, H. Y., & Kim, H. E. (2012). Assessment of the wearing comfort of clothing for the elderly women by EEG and ECG analyses. Journal of the Korean Society for Clothing Industry, 14(6), 1010-1017. doi:10.5805/KSCI.2012.14.6.1010
  3. Cerasa, A., Pignolo, L., Gramigna, V., Serra, S., Olivadese, G., Rocca, F., ... Tonin, P. (2018). Exoskeleton-robot assisted therapy in stroke patients: A lesion mapping study. Frontiers in Neuroinformatics, 12:44. doi:10.3389/fninf.2018.00044
  4. Choi, B.-M., & Noh, G.-J. (2004). Heart Rate Variability, HRV. Anesthesia and Pain Medicine, 8(2), 45-86.
  5. Choi, J., Kim, N., Wu, Y., & Hong, K. (2014). Effects of 3D compression suits on EEG analysis during and after walking. Journal of the Korean Society of Clothing and Textiles, 38(4), 440-454. doi:10.5850/JKSCT.2014.38.4.440
  6. Cole, J. (2016). Patternmaking with stretch knit fabrics. New York and London: Fairchild Books.
  7. ExoAtlet-II. (n.d.). ExoAtlet Asia. Reprinted from http://www.exoatletasia.com/cms/index.php?cidx=5&lang=eng
  8. Han, B., Kim, W., & Hong, S. (2012). The study on the effect of relaxation of stress E.D.T applies. Journal of the Korean Society of Radiology, 6(6), 515-520. doi:10.7742/jksr.2012.6.6.515
  9. Han, J.-E., & Chun, C.-Y. (2019). Electroencephalogram(EEG) change due to thermal displeasure when exposed to a sudden temperature increase. Journal of Korean Society Living Environment System, 26(4), 445-450. doi:10.21086/ksles.2019.08.26.4.445
  10. He, Y., Li, N., Wang, C., Xia, L.-q., Yong, X., & Wu, X.-y. (2019). Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. Frontiers of Information Technology & Electronic Engineering, 20(3), 318-329. doi: 10.1631/FITEE.1800561
  11. Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroence-phalography and Clinical Neurophysiology, 10(2), 370-375. doi:10.1016/0013-4694(58)90053-1
  12. Jeong, J.-H., Ryu, J.-H., Jo, J.-H., & Kim, H. (2009). The study for seamless garment design for detection of precordial leads of electrocardiography. Proceedings of the Korean Society for Emotion and Sensibility, Fall Conference, Korea, 202-205.
  13. Jeong, J.-R., & Kim, H.-E. (2009). Assessment of the wear comfort of outdoorwear by ECG and EEG analyses. Journal of the Korean Society of Clothing and Textiles, 33(10), 1665-1672. doi:10.5850/JKSCT.2009.33.10.1665
  14. Jeong, Y. (2006). 2D pattern development of tight-fitting bodysuit from 3D body scan data for comfortable pressure sensation. Korean Journal of Human Ecology, 15(3), 481-490.
  15. Jeong, Y., Kim, S.-H., & Yang, Y. (2010). Development of tightfitting garments with a portable ECG monitor to measure vital signs. Journal of the Korean Society of Clothing and Textiles, 34(1), 112-125. doi:10.5850/JKSCT.2010.34.1.112
  16. Kang, B.-S., Kang, D.-H., Kim, S.-I., & Park, W.-J. (2019). Development of a wearable soft robot for rehabilitation and motion assistance. Journal of Institute of Control, Robotics and Systems, 25(3), 255-259. doi:10.5302/J.ICROS.2019.19.8001
  17. Kim, H., & Heo, J. (2020). A study on the influence of RED on brain wave. Proceedings of the Korea Society of Color Studies, Spring Conference, Korea, 111-113.
  18. Kim, H. S., Koo, D. S., Nam, Y. J., Cho, K.-J., & Kim, S. (2019). Research on technology status and development direction of wearable robot. Fashion & Textile Research Journal, 21(5), 640-655. doi:10.5805/SFTI.2019.21.5.640
  19. Kim, S., & Hong, K. (2012). Engineering design process of tight-fit sportswear using 3D information of dermatomes and skin deformation in dynamic posture. Korean Journal of Human Ecology, 21(3), 551-565. doi:10.5934/KJHE.2012.21.2.551
  20. Korean Agency for Technology and Standards. (2015). 7차 인체치수조사 [The 7th national anthropometric survey report]. Size Korea. Retrieved from https://sizekorea.kr/page/report/1
  21. Kwon, C.-R., & Kim, D.-E. (2019). Development of women's cycle wear top with improved function. Fashion & Textile Research Journal, 21(1), 75-87. doi:10.5805/SFTI.2019.21.1.75
  22. Lee, H.-D., & Han, C.-S. (2014). Technical trend of the lower limb exoskeleton system for the performance enhancement. Journal of Institute of Control, Robotics and Systems, 20(3), 364 -371. doi:10.5302/J.ICROS.2014.14.9023
  23. Lee, H., Yu, S. N., Lee, S., Jang, J., Han, J., & Han, C. (2009). Development of command signal generating method for assistive wearable robot of the human upper extremity. Journal of Institute of Control, Robotics and Systems, 15(2), 176-183. doi:10.5302/J.ICROS.2009.15.2.176
  24. Lee, H. J., Kim, N. Y., Hong, K. H., & Lee, Y. J. (2015). Selection and design of functional area of compression garment for improvement in knee protection. Korean Journal of Human Ecology, 24(1), 97-109. doi:10.5934/kjhe.2015.24.1.97
  25. Lee, M.-S., & Cho, B.-J. (2015). Effects of the brain waves according to participation in therapeutic recreation programs on the depression, sleep disturbance and quality of life in the elderly with dementia. Journal of the Korea Academia-Industrial cooperation Society, 16(8), 5096-5110. doi:10.5762/KAIS.2015.16.8.5096
  26. Lee, O., Lee, B., & Hong, K. (2019). Effects of brassiere wing length and front panel band width on physiological response and sensorial pressure evaluation. Korean Journal of Human Ecology, 28(4), 391-401. doi:10.5934/kjhe.2019.28.4.391
  27. Lee, S.-Y. (2014). Analysis of EEG by tactile sensation of fabric. Journal of the Korean Society of Costume, 64(4), 118-130. doi:10.7233/jksc.2014.64.4.118
  28. Lim, D. C., Song, H., Oh, J. K., & Lee, M. K. (2012). The effects of the application of elastic compression band on lower extremity edema and fatigue in aged standing worker. Journal of the Global Senior Health Promotion Institute, 2(2), 43-53.
  29. MacRae, B. A., Cotter, J. D., & Laing, R. M. (2011). Compression garments and exercises: Garment considerations, physiology and performance. Sports Medicine, 41(10), 815-843. doi:10.2165/11591420-000000000-00000
  30. Mills, C., Scurr, J., & Wood, L. (2011). A protocol for monitoring soft tissue motion under compression garments during drop landings. Journal of Biomechanics, 44(9), 1821-1823. doi: 10.1016/j.jbiomech.2011.04.019
  31. Park, M.-J., & Lee, K.-H. (2014). Design of the lower limb exoskeleton for the walk-assistance. Proceedings of the Korea Society of Computer Information, Summer Conference, Korea, 22(2), 17-18.
  32. Park, S., & Hong, S. (2018). A study on the application of ergonomic dimensions in the wearable back-muscular strengthen robot design. Journal of Industrial Design, 12(1), 19-28. doi:10.37254/ids.2018.03.43.03.19
  33. Ryu, H., Ko, W., Kim, J., Kim, S., & Kim, M. K. (2013). Electroencephalography activities influenced by classroom smells of male high school. Science of Emotion & Sensibility, 16(3), 387-396.
  34. Sandoval-Gonzalez, O., Jacinto-Villegas, J., Herrera-Aguilar, I., Portillo-Rodiguez, O., Tripicchio, P., Hernandez-Ramos, M., ... Avizzano, C. (2016). Design and development of a hand exoskeleton robot for active and passive rehabilitation. International Journal of Advanced Robotic Systems, 13(2):66. doi: 10.5772/62404
  35. Yoon, Y. H. (2018). Back support exoskeleton robot for soldiers: Military applicability analysis. Journal of the Korean Society for Precision Engineering, 35(10), 925-931. doi:10.7736/KSPE.2018.35.10.925
  36. Ziegert, B., & Keil, G. (1988). Stretch fabric interaction with action wearables: Defining a body contouring pattern system. Clothing and Textiles Research Journal, 6(4), 54-64. doi:10.1177/0887302X8800600408