DOI QR코드

DOI QR Code

Field measurement and numerical simulation of snow deposition on an embankment in snowdrift

  • Ma, Wenyong (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Li, Feiqiang (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Sun, Yuanchun (China Railway Design Corporation) ;
  • Li, Jianglong (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Zhou, Xuanyi (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
  • 투고 : 2020.12.14
  • 심사 : 2021.04.14
  • 발행 : 2021.05.25

초록

Snow accumulation on the road frequently induces a big traffic problem in the cold snowy region. Accurate prediction on snow distribution is fundamental for solving drifting snow disasters on roads. The present study adopts the transient method to simulate the wind-induced snow distribution on embankment based on the mixture multiphase model and dynamic mesh technique. The simulation and field measurement are compared to confirm the applicability of the simulation. Furthermore, the process of snow accumulation is revealed. The effects of friction velocity and snow concentration on snow accumulation are analyzed to clarify its mechanism. The results show that the simulation agrees well with the field measurement in trends. Moreover, the snow accumulation on the embankment can be approximately divided into three stages with time, the snow firstly deposited on the windward side, then, accumulation occurs on the leeward side which induced by the wake vortex, finally, the snow distribution reaches an equilibrium state with the slope of approximately 7°. The friction velocity and duration have a significant influence on the snow accumulation, and the vortex scale directly affected the snow deposition range on the embankment leeward side.

키워드

과제정보

The authors gratefully acknowledge the support of the Education Department of Hebei Province (Grant No. ZD2018063).

참고문헌

  1. Anno, Y. (1984), "Requirements for modeling a snowdrift", Cold Reg. Sci. Technol., 8, 241-252. https://doi.org/10.1016/0165-232X(84)90055-7.
  2. ANSYS (2019), "ANSYS Fluent Theory Guide 19.0", Ansys Inc.
  3. Batina, J. (1990), "Unsteady euler airfoil solutions using unstructured dynamic meshes", AIAA, 28(8), 1381-1388. https://doi.org/10.2514/3.25229.
  4. Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional, transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92, 725-747. https://doi.org/10.1016/j.jweia.2004.03.011.
  5. Beyers, M. and Harms, T. (2003), "Outdoors modeling of snowdrift at SANAE IV Research Station, Antarctica", J. Wind Eng. Ind. Aerod., 91, 551-569. https://doi.org/10.1016/S0167-6105(02)00409-9.
  6. Beyers, M. and Waechter, B. (2008), "Modeling transient snowdrift development around complex three-dimensional structures", J. Wind Eng. Ind. Aerodyn., 96, 1603-1615. https://doi.org/10.1016/j.jweia.2008.02.032.
  7. Bianchi, G., Rane, S., Kovacevic, A. and Cipollone, R. (2017), "Deforming grid generation for numerical simulations of fluid dynamics in sliding vane rotary machines", Adv. Eng. Software, 112, 180-191. https://doi.org/10.1016/j.advengsoft.2017.05.010.
  8. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
  9. Budd, W.F. (1966), "The drifting of nonuniform snow particles1", Studies Antarct. Meteorol., 9, 59-70. https://doi.org/10.1029/AR009p0059.
  10. Delpech, P., Palier, P. and Gandemer, J. (1998), "Snowdrifting simulation around Antarctic buildings", J. Wind Eng. Ind. Aerod., 74, 567-576. https://doi.org/10.1016/S0167-6105(98)00051-8.
  11. Doorschot, J., Lehning, M. and Vrouwe, A. (2004), "Field measurements of snow-drift threshold and mass fluxes, and related model simulations", Bound. Layer Meteor., 113, 347-368. https://doi.org/10.1007/s10546-004-8659-z.
  12. Fang, P., Zheng, D., Li, L., Ma, W. and Tang, S. (2019), "Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles", Front. Earth Sci., 13(4), 705-720. https://doi.org/10.1007/s11707-019-0790-8.
  13. Gao, G., Wang, J. and Zhang, Y. (2020), "Optimization of the anti-snow performance of a high-speed train based on passive flow control", Wind Struct., 30, 325-338. https://doi.org/10.12989/was.2020.30.4.325.
  14. Gao, G., Zhang, Y., Zhang, J., Xie, F., Zhang, Y. and Wang, J. (2018), "Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method", Wind Struct., 27(4), 255-267. https://doi.org/10.12989/WAS.2018.27.4.255.
  15. Gao, J. (2016), "Analysis and assessment of the risk of snow and freezing disaster in China", Int. J. Disaster Risk Reduct., 19, 334-340. https://doi.org/10.1016/j.ijdrr.2016.09.007.
  16. Gordon, M., Savelyev, S. and Taylor, P.A. (2009), "Measurements of blowing snow, part II: Mass and number density profiles and saltation height at Franklin Bay, NWT, Canada", Cold Reg. Sci. Technol., 55(1), 75-85. 10.1016/j.coldregions.2008.07.001.
  17. Gordon, M. and Taylor, P.A. (2009), "Measurements of blowing snow, Part I: Particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada", Cold Reg. Sci. Technol., 55(1), 63-74. https://doi.org/10.1016/j.coldregions.2008.05.001.
  18. Gray, D.M. and Male, D.H. (1981), Handbook of snow-principles, processes, management and use. Pergamon, Toronto, Canada.
  19. Guala, M., Manes, C., Clifton, A. and Lehning, M. (2008), "On the saltation of fresh snow in a wind tunnel: Profile characterization and single particle statistics", J. Geophys. Res., 113, F03024. https://doi.org/10.1029/2007jf000975.
  20. Huang, N., Sang, J. and Han, K. (2011), "A numerical simulation of the effects of snow particle shapes on blowing snow development", J. Geophys. Res.-Atmos., 116, D22206. https://doi.org/10.1029/2011jd016657.
  21. Inatsu, M., Tanji, S. and Sato, Y. (2020), "Toward predicting expressway closures due to blowing snow events", Cold Reg. Sci. Technol., 177, 103-123. https://doi.org/10.1016/j.coldregions.2020.103123.
  22. Ingvander, S., Brown, I.A., Jansson, P., Holmlund, P., Johansson, C. and Rosqvist, G. (2018), "Particle size sampling and object-oriented image analysis for field investigations of snow particle size, shape, and distribution", Arct. Antarct. Alp. Res., 45(3), 330-341. https://doi.org/10.1657/1938-4246-45.3.330.
  23. Ito, Y., Naaim-Bouvet, F., Nishimura, K., Bellot, H., Thibert, E., Ravanat, X. and Fontaine, F. (2017), "Measurement of snow particle size and velocity in avalanche powder clouds", J. Glaciol., 63(238), 249-257. https://doi.org/10.1017/jog.2016.130.
  24. Iversen, J.D. (1981), "Comparison of wind-tunnel model and full-scale snow fence drifts", J. Wind Eng. Ind. Aerod., 8(3), 231-249. https://doi.org/10.1016/0167-6105(81)90023-4.
  25. Kada, W. and Shiina, T. (2005), Snow particle extraction and analysis using the differential of sequential images, IEEE International Geoscience and Remote Sensing Symposium, 3986-3989.
  26. Kang, L., Zhou, X., van Hooff, T., Blocken, B. and Gu, M. (2018), "CFD simulation of snow transport over flat, uniformly rough, open terrain: Impact of physical and computational parameters", J. Wind Eng. Ind. Aerod., 177, 213-226. https://doi.org/10.1016/j.jweia.2018.04.014.
  27. Kikuchi, T. (1981), "A wind tunnel study of the aerodynamic roughness associated with drifting snow", Cold Reg. Sci. Technol., 5, 107-118. https://doi.org/10.1016/0165-232X(81)90045-8.
  28. Kind, R.J. (1986), "Snowdrifting: A review of modelling methods", Cold Reg. Sci. Technol., 12(3), 217-228. https://doi.org/10.1016/0165-232X(86)90036-4
  29. Kumar, G., Gairola, A. and Vaid, A. (2020), "Flow and deposition measurement of foam beads in a closed recirculating wind tunnel for snowdrift modelling", Flow Meas. Instrum., 72, 101687. https://doi.org/10.1016/j.flowmeasinst.2019.101687.
  30. Labelle, A., Langevin, A. and Campbell, J.F. (2002), "Sector design for snow removal and disposal in urban areas", Socio-Econ. Plan. Sci., 36(3), 183-202. https://doi.org/10.1016/S0038-0121(01)00024-6.
  31. Launder, B. and Spalding, D.B. (1974), "The numerical computation of turbulent flows", Comput. Meth. Appl. Mech. Eng., 103, 456-460. https://doi.org/10.1016/0045-7825(74)90029-2.
  32. Liao, L., Meneghini, R., Nowell, H.K. and Liu, G. (2013), "Scattering computations of snow aggregates from simple geometrical particle models", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6(3), 1409-1417. https://doi.org/10.1109/jstars.2013.2255262.
  33. Liu, D., Li, Y., Wang, B., Hu, P. and Zhang, J. (2016), "Mechanism and effects of snow accumulations and controls by lightweight snow fences", J. Mod. Transport., 24(4), 261-269. 10.1007/s40534-016-0115-5.
  34. Naaim-Bouvet, F., Naaim, M. and Michaux, J.L. (2002), "Snow fences on slopes at high wind speed: Physical modelling in the CSTB cold wind tunnel", Nat. Hazards Earth Syst. Sci., 2(3/4), 137-145. 10.5194/nhess-2-137-2002.
  35. Naaim, M., Naaim-Bouvet, F. and Martinez, H. (1998), "Numerical simulation of drifting snow: erosion and deposition models", Ann. Glaciol., 26, 191-196. 10.1017/S0260305500014798.
  36. Pomeroy, J.W. and Gray, D.M. (1990), "Saltation of Snow", Water Resour. Res., 26(7), 1583-1594. https://doi.org/10.1029/WR026i007p01583
  37. Pomeroy, J.W. and Male, D.H. (1992), "Steady-state suspension of snow", J. Hydrol., 136, 275-301. https://doi.org/10.1016/0022-1694(92)90015-N.
  38. Qiang, S., Zhou, X., Kosugi, K. and Gu, M. (2019), "A study of snow drifting on a flat roof during snowfall based on simulations in a cryogenic wind tunnel", J. Wind Eng. Ind. Aerod., 188, 269-279. https://doi.org/10.1016/j.jweia.2019.02.022.
  39. Rane, S., Kovacevic, A., Stosic, N. and Kethidi, M. (2013), "Grid deformation strategies for CFD analysis of screw compressors", Int. J. Refrig, 36(7), 1883-1893. https://doi.org/10.1016/j.ijrefrig.2013.04.008.
  40. Richards, P.J. and Norris, S.E. (2019), "Appropriate boundary conditions for computational wind engineering: Still an issue after 25 years", J. Wind Eng. Ind. Aerod., 190, 245-255. https://doi.org/10.1016/j.jweia.2019.05.012.
  41. Saito, K., Yamaguchi, S., Iwata, H., Harazono, Y., Kosugi, K., Lehning, M. and Shulski, M. (2012), "Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model", Polar Sci., 6(1), 79-95. https://doi.org/10.1016/j.polar.2012.02.003.
  42. Sato, T., Kosugi, K., Sato, A. and Vilaplana, J.M.S.A. (2001), "Mass-flux measurements in a cold wind tunnel: Comparison of the mechanical traps with a snow-particle counter", Ann. Glaciol., 32(1), 121-124. https://doi.org/10.3189/172756401781819102.
  43. Schneiderbauer, S. (2006). "Computational Fluid Dynamics Simulation of Snow Drift in Alpine Environments", Ph.D. Dissertation, Johannes Kepler University Linz, Linz, Austria.
  44. Smedley, D.J., Kwok, K.C.S. and Kim, D.H. (1993), "Snowdrifting simulation around Davis Station Workshop, Antarctica", J. Wind Eng. Ind. Aerod., 50, 153-162. https://doi.org/10.1016/0167-6105(93)90070-5.
  45. Sullivan, J.L., Dowds, J., Novak, D.C., Scott, D.M. and Ragsdale, C. (2019), "Development and application of an iterative heuristic for roadway snow and ice control", Transp. Res. Pt. A-Policy Pract., 127, 18-31. https://doi.org/10.1016/j.tra.2019.06.021.
  46. Sun, X., He, R. and Wu, Y. (2018), "Numerical simulation of snowdrift on a membrane roof and the mechanical performance under snow loads", Cold Reg. Sci. Technol., 150, 15-24. https://doi.org/10.1016/j.coldregions.2017.09.007.
  47. Tabler, R.D. (1994), Design Guidelines for the Control of Blowing and Drifting Snow. National Research Council, Washington, DC.
  48. Tabler, R.D. (2003), Controlling Blowing and Drifting Snow with Snow Fences and Road Design. National Cooperative Highway Research Program Transportation Research Board of the National Academies (Project 20- 7(147)), American.
  49. Tan, J. (2017). "Simulation of Morphing Blades for Vertical Axis Wind Turbines", Ph.D. Dissertation, Concordia University, Monreal, Quebec, Canada.
  50. Tetsuya, K., Yamagishi, Y., Kimura, S. and Sato, K. (2017), "Aerodynamic behavior of snowflakes on an uneven road surface during a snowstorm", Open J. Fluid Dyn., 07(04), 696-708. https://doi.org/10.4236/ojfd.2017.74045.
  51. Thiis, T.K. (2000), "A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings", Wind Struct., 3(2), 73-81. https://doi.org/10.12989/was.2000.3.2.073.
  52. Thiis, T.K. and Gjessing, Y. (1999), "Large-scale measurements of snowdrifts around flat-roofed and single-pitch-roofed buildings", Cold Reg. Sci. Technol., 30(1), 175-181. https://doi.org/10.1016/S0165-232X(99)00021-X.
  53. Thiis, T.K. and O'Rourke, Michael (2015), "Model for Snow Loading on Gable Roofs", J. Struct. Eng., 141(12), 04015051. https://doi.org/10.1061/(asce)st.1943-541x.0001286.
  54. Thiis, T.K., Potac, J. and Ramberg, J.F. (2009), "3d numerical simulations and full scale measurements of snow depositions on a curved roof", Proceedings of the 5th European & African Conference on Wind Engineering (EACWE).
  55. Thordarson, S. (2002), "Wind Flow Studies for Drifting Snow on Roads", Ph.D. Dissertation, Norwegian University of Science and Technology, South-Trondelag, Norway.
  56. Tominaga, Y. (2018), "Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives", Cold Reg. Sci. Technol., 150, 2-14. https://doi.org/10.1016/j.coldregions.2017.05.004.
  57. Tominaga, Y., Mochida, A., Okaze, T., Sato, T., Nemoto, M., Motoyoshi, H., Nakai, S., Tsutsumi, T., Otsuki, M., Uamatsu, T. and Yoshino, H. (2011a), "Development of a system for predicting snow distribution in built-up environments: Combining a mesoscale meteorological model and a CFD mode", J. Wind Eng. Ind. Aerod., 99(4), 460-468. https://doi.org/10.1016/j.jweia.2010.12.004.
  58. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  59. Tominaga, Y., Okaze, T. and Mochida, A. (2011b), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020.
  60. Tominaga, Y., Okaze, T. and Mochida, A. (2018), "Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle", J. Wind Eng. Ind. Aerod., 182, 262-271. https://doi.org/10.1016/j.jweia.2018.09.008.
  61. Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(1), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7.
  62. Walter, B., Huwald, H., Gehring, J., Buhler, Y. and Lehning, M. (2020), "Radar measurements of blowing snow off a mountain ridge", Cryosphere, 14(6), 1779-1794. https://doi.org/10.5194/tc-14-1779-2020.
  63. Wang, J., Liu, H., Chen, Z. and Ma, K. (2019), "Probability-based modeling and wind tunnel test of snow distribution on a stepped flat roof", Cold Reg. Sci. Technol., 163, 98-107. https://doi.org/10.1016/j.coldregions.2019.04.004.
  64. Wang, Z. and Chen, Y. (1980), "Research on Prevention of Snow-drifts by Blower Fences", J. Glaciol., 26, 435-445. 10.1017/S0022143000010959.
  65. White, B. (1996), "Laboratory simulation of aeolian sand transport and physical modeling of flow around dunes", Annals of Arid Zone, 35(3), 187-213. https://doi.org/10.1007/s00585-996-0986-6.
  66. Yu, Z.X., Zhu, F., Cao, R., Xiaoxiao, C., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on roofs 3D stepped flat roofs", Wind Struct., 28, 31-47. https://doi.org/10.12989/was.2019.28.1.031.
  67. Zhang, G., Zhang, Q., Fan, F. and Shen, S. (2019), "Research on snow load characteristics on a complex long-span roof based on snow-wind tunnel tests", Appl. Sci., 9(20), 4369. https://doi.org/10.3390/app9204369.
  68. Zhang, G., Zhang, Q., Fan, F. and Shen, S. (2021), "Numerical simulations of development of snowdrifts on long-span spherical roofs", Cold Reg. Sci. Technol., 182, https://doi.org/103211.10.1016/j.coldregions.2020.103211.
  69. Zhao, H., Zhai, W. and Chen, Z. (2015), "Effect of noise barrier on aerodynamic performance of high-speed train in crosswind", Wind Struct., 20, 509-525. https://doi.org/10.12989/was.2015.20.4.509.
  70. Zhao, L., Yu, Z.X., Zhu, F., Qi, X. and Zhao, S. (2016), "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542. https://doi.org/10.12989/was.2016.23.6.523.
  71. Zhou, X., Kang, L., Gu, M., Qiu, L. and Hu, J. (2016a), "Numerical simulation and wind tunnel test for redistribution of snow on a flat roof", J. Wind Eng. Ind. Aerod., 153, 92-105. https://doi.org/10.1016/j.jweia.2016.03.008.
  72. Zhou, X., Kang, L., Yuan, X. and Gu, M. (2016b), "Wind tunnel test of snow redistribution on flat roofs", Cold Reg. Sci. Technol., 127, 49-56. https://doi.org/10.1016/j.coldregions.2016.04.006.
  73. Zhou, X., Qiang, S., Peng, Y. and Gu, M. (2016c), "Wind tunnel test on responses of a lightweight roof structure under joint action of wind and snow loads", Cold Reg. Sci. Technol., 132, 19-32. https://doi.org/10.1016/j.coldregions.2016.09.011
  74. Zhou, X., Zhang, T., Ma, W., Quan, Y., Gu, M., Kang, L. and Yang, Y. (2020), "CFD simulation of snow redistribution on a bridge deck: Effect of barriers with different porosities", Cold Reg. Sci. Technol., 181, 103174. https://doi.org/10.1016/j.coldregions.2020.103174.
  75. Zhou, X., Zhang, Y., Kang, L. and Gu, M. (2019), "CFD simulation of snow redistribution on gable roofs: Impact of roof slope", J. Wind Eng. Ind. Aerod., 185, 16-32. https://doi.org/10.1016/j.jweia.2018.12.008.
  76. Zhu, F., Yu, Z., Zhao, L., Xue, M. and Zhao, S. (2017), "Adaptive-mesh method using RBF interpolation: A time-marching analysis of steady snow drifting on stepped flat roofs", J. Wind Eng. Ind. Aerod., 171, 1-11. https://doi.org/10.1016/j.jweia.2017.09.008.