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INVARIANT MEAN VALUE PROPERTY AND

M-HARMONICITY ON THE HALF-SPACE

Boo Rim Choe and Kyesook Nam

Abstract. It is well known that every invariant harmonic function on the

unit ball of the multi-dimensional complex space has the volume version of
the invariant mean value property. In 1993 Ahern, Flores and Rudin first

observed that the validity of the converse depends on the dimension of
the underlying complex space. Later Lie and Shi obtained the analogues

on the unit ball of multi-dimensional real space. In this paper we obtain

the half-space analogues of the results of Liu and Shi.

1. Introduction

As is well known on the setting of the unit ball of the multi-dimensional com-
plex space, the invariant harmonic (=harmonic with respect to the Bergman
metric) functions satisfy the invariant mean value property; see [6, Section
3.3.6] for precise definition of the invariant mean value property. Conversely,
provided that functions under consideration are continuous, the invariant mean
value property implies the invariant harmonicity. Of course, the invariant mean
value property yields its volume version, which we may refer to as the invariant
volume mean value property. In 1993 Ahern, Flores and Rudin [1] investigated
whether the invariant volume mean value property implies the invariant har-
monicity. They answered in the positive for bounded functions. To our great
surprise, when the boundedness is relaxed to integrability, they also discovered
a cut-off phenomenon for the dimension d of the underlying complex space.
More explicitly, when functions under consideration are just integrable, they
showed that the invariant volume mean value property implies the invariant
harmonicity if and only if d ≤ 11.

In the setting of the unit ball of the multi-dimensional real space, Liu and
Shi [5] obtained the real analogues of what are mentioned in the preceding
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paragraph; see Section 2.6 for precise statements. The purpose of the current
paper is to obtain the analogues in the setting of the upper half-space.

To begin with, we set some notation and terminology. For a fixed positive
integer n > 1, let H = Rn−1 ×R+ be the upper half-space in the real n-space
Rn where R+ denotes the set of all positive real numbers. We will often write
a typical point z ∈ H as z = (z′, zn) where z′ ∈ Rn−1 and zn > 0.

Given z ∈ H, we denote by φz : H→ H the function defined by

φz(w) := znw + (z′, 0)

for w ∈ H. Assume n > 2 for a moment. Given γ real, associated with the

Riemannian metric ds2 = z
2γ/(n−2)
n

∑n
j=1 dz

2
j on H is the Laplace-Beltrami

operator (see [3])

Lγ := z2γ/(2−n)
n

[
∆ +

γ

zn

∂

∂zn

]
.(1.1)

Here, and elsewhere, ∆ denotes the ordinary Laplacian on Rn. One may check
by straightforward calculation

Lγ(f ◦ φz) = z
2(1− γ

2−n )
n Lγf ◦ φz

and, in particular,

L2−n(f ◦ φz) = (L2−nf) ◦ φz(1.2)

for z ∈ H and f ∈ C2(H).
Motivated by the observation in the preceding paragraph, we set

∆̃ = ∆̃H := z2
n

[
∆ +

2− n
zn

∂

∂zn

]
for n ≥ 2. Note from (1.2)

∆̃(f ◦ φz) = (∆̃f) ◦ φz(1.3)

for n > 2; this is also quite elementary for n = 2. Following [5] and [6], we now

say that a function f ∈ C2(H) is M-harmonic if f is annihilated by ∆̃. Note
that the notions of the M-harmonicity and the ordinary harmonicity coincide
for n = 2, but not for n > 2. Also, note from (1.3) that theM-harmonicity on
H is invariant under composition with the maps φz. In this sense we refer to

∆̃ as the invariant Laplacian on H.
In order to state our main results, we introduce more notation. Put

e := (0, . . . , 0, 1) ∈ H

for a standard reference point in H. Denote by B and S := ∂B the unit ball
and the unit sphere of Rn, respectively. Given z ∈ H and 0 < r < 1, let Er(z)
be the pseudohyperbolic ball, which is to be defined in Section 2.3, with radius
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r and center z. Let ωr be the weighted surface area measure on ∂Er(e) given
by

dωr(ζ) :=
1

|rS|

(
2

|ζ + e|2

)n−1

dνr(ζ), ζ ∈ ∂Er(z),(1.4)

where |rS| is the surface area of rS, i.e., |rS| := rn−1|S| and νr denotes the
surface area measure on ∂Er(e). Finally, we denote by µ the positive finite
measure on H given by

dµ(w) :=
1

|B|

(
2

|w + e|2

)n
dw, w ∈ H,

where |B| is the volume of B.
We are now ready to introduce the notions of the invariant (volume) mean

value property on H. We say that a function f ∈ C(H) has the invariant
H-mvp(=mean value property) if

f(z) =

∫
∂Er(e)

(f ◦ φz) dωr(1.5)

for z ∈ H and 0 < r < 1. For the motivation of this definition, see Proposition
3.1 below. Also, we say that a function f ∈ L1(µ) has the invariant H-
vmvp(=volume mvp) if ∫

H

(f ◦ φz) dµ = f(z)(1.6)

for z ∈ H. For the motivation of this definition, see Proposition 4.1. Note
φφw(z) = φw ◦ φz. Thus the mean value properties defined above are invariant
under composition with the maps φz. This is why we use the term “invariant”
in the above definitions.

In this paper we obtain the following results:

(a) For continuous functions on H, the invariant H-mvp coincides with the
M-harmonicity;

(b) For essentially bounded functions on H, the invariant H-vmvp implies
the M-harmonicity;

(c) For µ-integrable functions on H, the invariant H-vmvp implies the
M-harmonicity if and only if n ≤ 12.

In Section 2 we collect some well-known facts and auxiliary results. In
Section 3 we show Assertion (a). In Section 4 we prove results that contain
Assertions (b) and (c) as special cases.

2. Preliminaries

In this section we recall some basic facts and collect some auxiliary results.
The notation x · y will stand for the inner product of x, y ∈ Rn.
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2.1. Inversion relative to the unit sphere

Let Λ(x) = x∗ be the inversion of x relative to S, i.e.,

Λ(x) = x∗ :=


x
|x|2 if x 6= 0,∞,
0 if x =∞,
∞ if x = 0.

(2.1)

For x ∈ Rn \ {0}, let Q(x) be the n× n matrix with the entries

Q(x)ij =
xixj
|x|2

, i, j = 1, 2, . . . , n

and put

U(x) := I − 2Q(x),

where I is the n× n identity matrix. Note Q(x)2 = Q(x) and thus U(x)2 = I.
Accordingly, U(x) is an orthogonal matrix. By a straightforward calculation
we have

Λ′(x) =
1

|x|2
U(x).(2.2)

Thus Λ′(x) is a conformal matrix with scaling factor |x|−2. We refer to [2, p. 18]
for details.

2.2. Möbius transformations on B

We recall the canonical Möbius transformations on B. All relevant details
and related results can be found in [2, pp. 17–30].

Given a ∈ B, the canonical Möbius transformation λa on B that exchanges
a and 0 is given by

λa(x) = a+ (1− |a|2)(a− x∗)∗, x ∈ B;(2.3)

note λa = −Ta in the notation of [2]. Avoiding the ∗-notation, we have

λa(x) =
(1− |a|2)(a− x) + |a− x|2a

[a, x]2
,

where

[a, x] :=
√

1− 2a · x+ |a|2|x|2.
The map λa is an involution of B, i.e., λ−1

a = λa. As is well known, these maps
and orthogonal transformations on Rn generate all Möbius transformations on
B.

Differentiating (2.3) via (2.2), we have

λ′a(x) =
|a|2 − 1

[a, x]2
U(x)U(a− x∗).(2.4)

Thus λ′a(x) is a conformal matrix with scaling factor |a|
2−1

[a,x]2 .
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2.3. Pseudohyperbolic distances

We recall the well-known pseudohyperbolic distances on the ball and the
half-space.

In the setting of the ball B, the pseudohyperbolic distance ρB is defined by

ρB(x, y) := |λx(y)| = |x− y|
[x, y]

, x, y ∈ B;

see [2, p. 27] for the second equality. As is well-known, ρB is Möbius invariant,
i.e.,

(2.5) ρB
(
λa(x), λa(y)

)
= ρB(x, y)

for all a, x, y ∈ B. For a ∈ B and 0 < r < 1, we denote by Dr(a) the
pseudohyperbolic ball with radius r and center a. Note

λa[Dr(b)] = Dr

(
λa(b)

)
(2.6)

for all a, b ∈ B by the Möbius invariance (2.5). A straightforward calculation
shows that the pseudohyperbolic ball Dr(a) is a Euclidean ball with

(center) =
(1− r2)

1− |a|2r2
a and (radius) =

(1− |a|2)r

1− |a|2r2
.(2.7)

In the setting of the half-space H, the pseudohyperbolic distance ρH is de-
fined by

ρH(z, w) :=
|z − w|
|z − w|

, z, w ∈ H.

Here, and in what follows, we use the notation

w := (w′,−wn)

for w ∈ H. For z ∈ H and 0 < r < 1, we denote by Er(z) the pseudohyperbolic
ball with radius r and center z. The pseudohyperbolic ball Er(z) is also a
Euclidean ball with

(center) =

(
z′,

1 + r2

1− r2
zn

)
and (radius) =

2r

1− r2
zn.

In particular, we have

∂Er(e) =
1 + r2

1− r2
e +

2r

1− r2
S.

So, the surface area measure νr on ∂Er(e) can be describes in terms of the
surface area measure, denoted by σ, on S normalized to have total mass 1.
More explicitly, νr is determined by the equation∫

∂Er(e)

ψ(ζ) dνr(ζ)

= |S|
(

2r

1− r2

)n−1 ∫
S

ψ

(
1 + r2

1− r2
e +

2r

1− r2
ζ

)
dσ(ζ)

(2.8)
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for functions ψ continuous on ∂Er(e). Note(
1 + r2

1− r2
e +

2r

1− r2
ζ

)
+ e =

2

1− r2
(rζ + e).

It follows from (1.5) and (2.8) that f ∈ C(H) has the invariant H-mvp if

f(z) =

∫
S

(f ◦ φz)
(

1 + r2

1− r2
e +

2r

1− r2
ζ

)(
1− r2

|rζ + e|2

)n−1

dσ(ζ)

for z ∈ H and 0 < r < 1.

2.4. A Möbius transformation

Consider a Möbius transformation T defined by

T (z) := 2Λ(z + e) + e, z ∈ H.(2.9)

Differentiating this, we have

T ′(z) = 2Λ′(z + e)R,(2.10)

where R is the orthogonal matrix representing the reflection z 7→ z. Thus, we
see from (2.2) that T ′(z) is a conformal matrix with scaling factor 2

|z+e|2 .

Meanwhile, we have by straightforward calculation

|T (z)| = |z − e|
|z + e|

(2.11)

so that

1− |T (z)|2 =
4zn
|z + e|2

.(2.12)

This shows that T takes H onto B. Being a Möbius transformation, one may
expect T : H → B to preserve pseudohyperbolic distances, which is actually
the case as in the next lemma.

Lemma 2.1. The identity

ρH(z, w) = ρB
(
T (z), T (w)

)
holds for z, w ∈ H.

Proof. It suffices to check the identities

|T (z)− T (w)| = 2|z − w|
|z + e||w + e|

(2.13)

and

[T (z), T (w)] =
2|z − w|

|z + e||w + e|
(2.14)

for z, w ∈ H.
Note from the definition of T

T (z) · T (w) =
4(z · w − znwn) + (|z|2 − 1)(|w|2 − 1)

|z + e|2|w + e|2
.
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Also, note from (2.11)

|T (z)|2 + |T (w)|2 =
|z − e|2

|z + e|2
+
|w − e|2

|w + e|2

= 2 · (|z|2 + 1)(|w|2 + 1)− 4znwn
|z + e|2|w + e|2

.

Now, (2.13) holds by the above two identities.
Next, using (2.12) and (2.13), we obtain

[T (z), T (w)]2 = |T (z)− T (w)|2 + (1− |T (z)|2)(1− |T (w)|2)

=
4|z − w|2 + 16znwn
|z + e|2|w + e|2

=
4|z − w|2

|z + e|2|w + e|2

and thus (2.14) holds. The proof is complete. �

2.5. M-harmonic functions on B

The invariant Laplacian ∆̃B on B is defined by

∆̃B =
(1− |x|2)2

4

[
∆ +

2(n− 2)

1− |x|2
R
]
, x ∈ B,

where R :=
∑n
j=1 xj

∂
∂xj

denotes the radial differentiation. We say that a

function g ∈ C2(B) is M-harmonic on B if g is annihilated by ∆̃B. As in the

case of the half-space, ∆̃B commutes with composition with the maps λa

∆̃B(g ◦ λa) = (∆̃Bg) ◦ λa;

see [4, Eq. (1.2)]. So, theM-harmonicity on B is invariant under composition
with Möbius transformations, which is the reason why we use the term “invari-

ant” for the operator ∆̃B. Furthermore, the invariant Laplacians ∆̃B, ∆̃H and
the Möbius transformation T are intimately related by

∆̃H(g ◦ T ) = (∆̃Bg) ◦ T ;(2.15)

see [4, Eq. (1.5)]. This can be verified through straightforward calculation via
the explicit formula for (2.9):

T (z) =

(
2z′

|z + e|2
,
|z|2 − 1

|z + e|2

)
for z ∈ H.
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2.6. Results of Liu and Shi

We say that a function g ∈ C(B) has invariant B-mvp if

g(a) =

∫
S

(g ◦ λa)(rζ) dσ(ζ)(2.16)

for a ∈ B and 0 < r < 1. In this definition, one may actually require more
generally that

(g ◦ λ)(0) =

∫
S

(g ◦ λ)(rζ) dσ(ζ)

for all Möbius transformations λ on B and 0 < r < 1. Note that these two
definitions coincide, because Möbius transformations on B are generated by
orthogonal transformations and canonical Möbius transformations λa.

As in the case of ordinary harmonicity, it turns out that the notions for
continuous functions on B of the M-harmonicity and the invariant B-mvp
coincide. See Liu and Shi [5] for a proof.

Theorem 2.2. Every M-harmonic function on B has the invariant B-mvp.
Conversely, if a continuous function on B has the invariant B-mvp, then it is
M-harmonic on B.

Given α > −1, let vα be the standard α-weighted measure on B given by

dvα(x) := cα(1− |x|2)α dx, x ∈ B,

where the constant cα := 1
|B| ·

Γ(n/2+α+1)
Γ(n/2+1)Γ(α+1) is chosen so that vα has total

mass 1.
Multiply by rn−1(1−r2)α the both sides of (2.16) and then integrate against

the measure dr on [0, 1). The resulting equality then reduces to

g(a) =

∫
B

(g ◦ λa) dvα =: BB
α g(a)(2.17)

for a ∈ B. In other words, g is fixed by the transform BB
α , often called the

α-Berezin transform on B. We see from (2.17) and Theorem 2.2 that

M-harmonicity on B =⇒ α-invariant B-vmvp(2.18)

for each α > −1.
Note that α-Berezin transform BB

α can be applied to vα-integrable functions.
We say that a function g ∈ L1(vα) have the α-invariant B-vmvp, if it is fixed
by BB

α . The 0-invariant B-vmvp is simply called the invariant B-vmvp.
The following two theorems are due to Liu and Shi [5].

Theorem 2.3. Let α > −1. If g ∈ L∞(vα) has the α-invariant B-vmvp, then
g isM-harmonic on B.

Theorem 2.4. Let m be a nonnegative integer. Then the m-invariant B-vmvp
of an arbitrary function g ∈ L1(vm) implies the M-harmonicity of g on B if
and only if n+ 2m ≤ 12.
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The special case m = 0 of the above theorem might be of independent
interest: the invariant B-vmvp of an arbitrary function g ∈ L1(v0) implies the
M-harmonicity of g on B if and only if n ≤ 12. This is the real analogues of
results of Ahern, Flores and Rudin [1] mentioned in the Introduction.

3. Invariant mean value property

In this section, we show that the notions for continuous functions on H of
the M-harmonicity and the invariant H-mvp coincide, which is the half-space
analogue of Theorem 2.2.

We set some notation for simplicity. For 0 < r < 1, put

MB
r g(a) : =

∫
S

(g ◦ λa)(rζ) dσ(ζ), a ∈ B

for g ∈ C(B) and

MH
r f(z) : =

∫
∂Er(e)

(f ◦ φz)(ζ) dωr(ζ), z ∈ H

for f ∈ C(H); recall that ωr is the measure introduced in (1.4).
With the notation introduced above, we see that a function g ∈ C(B) has

the invariant B-mvp if and only if MB
r g = g for each 0 < r < 1. Similarly, a

function f ∈ C(H) has the invariant H-mvp if and only if MH
r f = f for each

0 < r < 1.

Proposition 3.1. The identity

MH
r (g ◦ T ) = (MB

r g) ◦ T
holds for g ∈ C(B) and 0 < r < 1.

Proof. Let z ∈ H and 0 < r < 1. Put a := T (z) ∈ B. Note from (2.6)

λa(rB) = λa(Dr(0)) = Dr(a)

and hence
λa(rS) = ∂Dr(a).

With this in mind consider the function F : ∂Dr(a) → S defined by F (η) :=
r−1λa(η). Note from (2.4) that F ′(η) is a conformal matrix with scaling factor
|a|2−1
r[a,η]2 . Thus, given g ∈ C(B), we obtain by the change of variables ξ = F (η)

MB
r g(a) =

∫
S

(g ◦ λa)(rξ) dσ(ξ)

=
1

|S|

∫
∂Dr(a)

(g ◦ λa)
(
rF (η)

)(1− |a|2

r[a, η]2

)n−1

dτr,a(η)

=
1

|S|

∫
∂Dr(a)

g(η)

(
1− |a|2

r[a, η]2

)n−1

dτr,a(η),(3.1)

where τr,a is the surface area measure on ∂Dr(a).
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Recall from (2.10) that T ′(ω) is a conformal matrix with scaling factor
2

|ω+e|2 . So, denoting by νr,z the surface area measure on ∂Er(z), we see via

the change of variables η = T (ω) and Lemma 2.1 that the expression in (3.1)
is equal to

1

|S|

∫
∂Er(z)

(g ◦ T )(ω)

(
1− |T (z)|2

r[T (z), T (ω)]2

)n−1(
2

|ω + e|2

)n−1

dνr,z(ω).

In conjunction with the integrand of this integral, we note from (2.11), (2.12)
and (2.14)

1− |T (z)|2

[T (z), T (ω)]2|ω + e|2
=

zn
|z − ω|2

.

Summarizing what have been observed so far, we have

(MB
r g ◦ T )(z) =

1

|S|

∫
∂Er(z)

f(ω)

(
2zn

r|z − ω|2

)n−1

dνr,z(ω),

where f = g ◦ T . Recall Er(z) = φz
(
Er(e)

)
. Note for ζ ∈ ∂Er(e)

|z − φz(ζ)| = zn|ζ + e|(3.2)

and φ′z(ζ) = znI where I is the n×n identity matrix. Also, note νr,e = νr. So,
the change of variables ω = φz(ζ) yields

(MB
r g ◦ T )(z) =

1

|S|

∫
∂Er(e)

(f ◦ φz)(ζ)

(
2z2
n

r|z − φz(ζ)|2

)n−1

dνr(ζ)

=
1

|rS|

∫
∂Er(e)

(f ◦ φz)(ζ)

(
2

|ζ + e|2

)n−1

dνr(ζ),

which is equal to MH
r f(z) by definition (1.4) of the measure ωr. The proof is

complete. �

Proposition 3.2. Let f ∈ C(H). Then f has the invariant H-mvp if and only
if f ◦ T−1 has the invariant B-mvp.

Proof. This is immediate from Proposition 3.1. �

We now obtain the half-space analogue of Theorem 2.2.

Theorem 3.3. Every M-harmonic function on H has the invariant H-mvp.
Conversely, if a continuous function on H has the invariant H-mvp, then it is
M-harmonic on H.

Proof. Note from (2.15) that f ∈ C2(H) is M-harmonic on H if and only if
f ◦ T−1 is M-harmonic on B. So, the theorem holds by Theorem 2.2 and
Proposition 3.2. �
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4. Invariant volume mean value property

In this section we obtain the half-space analogues of Theorems 2.3 and 2.4
concerning the volume version of the invariant mean value property.

Before proceeding, we first introduce some notation and terminology. Given
α > −1, we denote by µα the positive finite measure on H given by

dµα(z) := cα2n+2α zαn
|z + e|2(n+α)

dz, z ∈ H;

recall that cα is the normalizing constant for the measure vα on B. Using this
measure, we define α-Berezin transform BH

α by

BH
α f(z) :=

∫
H

(f ◦ φz) dµα, z ∈ H

for f ∈ L1(µα). Also, we say that a function f ∈ L1(µα) has the α-invariant
H-vmvp on H, if it is fixed by BH

α . So, the invariant H-vmvp defined in (1.6)
is the 0-invariant H-vmvp.

It turns out that the Berezin transforms and the Möbius transformation T
are intimately related as follows.

Proposition 4.1. The identity

BH
α (g ◦ T ) = (BB

α g) ◦ T
holds for α > −1 and g ∈ L1(vα).

Proof. Let z ∈ H and put a := T (z) ∈ B. We note

1− |λa(x)|2 =
(1− |a|2)(1− |x|2)

[a, x]2
, x ∈ B;

see [2, p. 27] for a proof. Also, recall from (2.4) that λ′a(x) is a conformal

matrix with scaling factor |a|
2−1

[a,x]2 . Thus, by the change of variables y = λa(x),

we have

(BB
α g ◦ T )(z) = BB

α g(a)

= cα

∫
B

(g ◦ λa)(y)(1− |y|2)α dy

= cα

∫
B

g(x)(1− |λa(x)|2)α
(

1− |a|2

[a, x]2

)n
dx

= cα

∫
B

g(x)

(
1− |a|2

[a, x]2

)n+α

(1− |x|2)α dx.

Recall from (2.10) that T ′(ξ) is a conformal matrix with scaling factor 2
|ξ+e|2 .

Thus, by the change of variables x = T (ξ), the expression above is the same as

cα

∫
H

f(ξ)

(
1− |T (z)|2

[T (z), T (ξ)]2

)n+α

(1− |T (ξ)|2)α
(

2

|ξ + e|2

)n
dξ,(4.1)
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where f := g ◦T . In conjunction with this, we note from (2.12) and (2.14) that

(1− |T (ξ)|2)α

[T (z), T (ξ)]2(n+α)

(
2

|ξ + e|2

)n
=

1

2n

(
|z + e|2

|z − ξ|2

)n+α

ξαn

and

(1− |T (z)|2)n+α =

(
4zn
|z + e|2

)n+α

.

Also, note that (3.2) is valid with general w ∈ H in place of ζ. Thus the
expression in (4.1) simplifies to

cα2n+2α

∫
H

f(ξ)

(
zn

|z − ξ|2

)n+α

ξαn dξ

= cα2n+2α

∫
H

(f ◦ φz)(w)

(
zn

|z − φz(w)|2

)n+α

(znwn)αznn dw

= cα2n+2α

∫
H

(f ◦ φz)(w)
wαn

|w + e|2(n+α)
dw,

which is equal to BH
α f(z). The proof is complete. �

Proposition 4.2. Let α > −1 and f ∈ L1(µα). Then f has the α-invariant
H-vmvp if and only if f ◦ T−1 has the α-invariant B-vmvp.

Proof. This is immediate from Proposition 4.1. �

As a consequence, we see that the M-harmonicity on H implies the α-
invariant H-vmvp.

Theorem 4.3. Let α > −1 and assume that f ∈ L1(µα) is M-harmonic on
H. Then f has the α-invariant H-vmvp.

Proof. Since f is M-harmonic on H, f ◦ T−1 is M-harmonic on B by (2.15).
So, f ◦T−1 has the α-invariant B-vmvp by (2.18) and thus has the α-invariant
H-vmvp by Proposition 4.2. The proof is complete. �

We are now ready to prove the half-space analogue of Theorem 2.3.

Theorem 4.4. Let α > −1. If f ∈ L∞(µα) has the α-invariant H-vmvp, then
f isM-harmonic on H.

Proof. Note f ◦ T−1 ∈ L∞(vα) for f ∈ L∞(µα). Thus the theorem holds by
Proposition 4.2, Theorem 2.3 and (2.15). �

For the half-space analogue of Theorem 2.4, we first note that composition
with T has the following isometric property.
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Lemma 4.5. The identity∫
B

g dvα =

∫
H

(g ◦ T ) dµα

for α > −1 and positive Borel functions g on B.

Proof. Making the change of variables z = T−1(x) (as in the proof of Proposi-
tion 4.1), we obtain by (2.12)∫

B

g(x) dvα(x) = cα

∫
H

(g ◦ T )(z)(1− |T (z)|2)α
(

2

|z + e|2

)n
dz

for positive Borel functions g on B. So, the lemma holds by (2.12). The proof
is complete. �

Theorem 4.6. Let m be a nonnegative integer. Then the m-invariant H-vmvp
of an arbitrary function f ∈ L1(µm) implies the M-harmonicity of f on H if
and only if n+ 2m ≤ 12.

Proof. Note f◦T−1 ∈ L1(vm) for f ∈ L1(µm) by Lemma 4.5. Thus the theorem
holds by Proposition 4.2, Theorem 2.3 and (2.15). �

As is mentioned after Theorem 2.2, the special case m = 0 of the above
theorem might be of independent interest: the invariant H-vmvp of an arbitrary
function f ∈ L1(µ) implies theM-harmonicity of f on H if and only if n ≤ 12.
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