A BOUND ON HÖLDER REGULARITY FOR $\bar{\partial}$-EQUATION ON PSEUDOCONVEX DOMAINS IN \mathbb{C}^{n} WITH SOME COMPARABLE EIGENVALUES OF THE LEVI-FORM

Sanghyun Cho

Abstract

Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^{n} and assume that the ($n-2$)-eigenvalues of the Levi-form are comparable in a neighborhood of $z_{0} \in b \Omega$. Also, assume that there is a smooth 1 dimensional analytic variety V whose order of contact with $b \Omega$ at z_{0} is equal to η and $\Delta_{n-2}\left(z_{0}\right)<\infty$. We show that the maximal gain in Hölder regularity for solutions of the $\bar{\partial}$-equation is at most $\frac{1}{\eta}$.

1. Introduction

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^{n} and assume that $z_{0} \in b \Omega$. Suppose that there exist a neighborhood U of z_{0} and a constant $C>0$ so that for each $v \in L_{\infty}^{0,1}(\Omega)$ with $\bar{\partial} v=0$, there is a $u \in L^{2}(\Omega) \cap \Lambda_{\kappa}(U \cap \bar{\Omega})$ such that $\bar{\partial} u=v$ in Ω and

$$
\begin{equation*}
\|u\|_{\Lambda_{\kappa}(U \cap \bar{\Omega})} \leq C\|v\|_{L_{\infty}(\Omega)} \tag{1.1}
\end{equation*}
$$

for some $\kappa>0$, where $\Lambda_{\kappa}(S)$ denotes the Hölder space of order κ on S. In this event, we say the Hölder estimates of order $\kappa>0$ for $\bar{\partial}$-equation hold on U.

When Ω is a bounded strongly pseudoconvex domain in \mathbb{C}^{n}, (1.1) holds for $\kappa=\frac{1}{2}$ [10]. For weakly pseudoconvex domain in \mathbb{C}^{n}, however, (1.1) is known only for some special cases. Namely, pseudoconvex domains of finite type in $\mathbb{C}^{2}[12,13]$, convex finite type domains in \mathbb{C}^{n} [9], etc. Therefore, the Hölder estimate for general pseudocovex domains in \mathbb{C}^{n} is one of the big questions in several complex variables.

Meanwhile, it is of great interest to find a necessary condition or optimal possible gain of $\kappa>0$ in (1.1). Normally this question depends on the boundary geometry of Ω near $z_{0} \in b \Omega$. Several authors have obtained necessary conditions for Hölder regularity of $\bar{\partial}$ on restricted classes of domains [11-14].

Let $\Delta_{q}(z)$ denote the D'Angelo's finite q-type at z, and let $\Delta_{q}^{R e g}(z)$ be the "regular finite q-type", which is defined by the maximum order of contact

[^0]of non-singular q-dimensional varieties [8]. Note that $\Delta_{p}(z) \leq \Delta_{q}(z)$ (and $\left.\Delta_{p}^{R e g}(z) \leq \Delta_{q}^{R e g}(z)\right)$ if $p \geq q, \Delta_{q}^{R e g}(z) \leq \Delta_{q}(z)$, and $\Delta_{q}^{R e g}(z)$ is a positive integer.

When $\Delta_{n-1}\left(z_{0}\right):=m_{n-1}<\infty$, Krantz [11] showed that $\kappa \leq \frac{1}{m_{n-1}}$. Krantz's result is sharp for $\Omega \subset \mathbb{C}^{2}$, and when α is a ($0, n-1$)-form. In [12], McNeal proved sharp Hölder estimates for $(0,1)$-form α under the condition that Ω has a holomorphic support function at $z_{0} \in \Omega$. Note that the existence of holomorphic support function is satisfied for restricted domains and it is often the first step to prove the Hölder estimates for the $\bar{\partial}$-equation [13]. In the rest of this section, we let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^{n} with smooth defining function r, that is, $\Omega=\{z: r(z)<0\} \Subset \mathbb{C}^{n}$.
Definition 1.1. Let $\lambda_{1}(z), \ldots, \lambda_{n-1}(z)$ be the nonnegative eigenvalues of the Levi-form, $\partial \bar{\partial} r(z)$. We say the eigenvalues $\left\{\lambda_{k}: k=s, \ldots, s+l\right\}$ are comparable in a neighborhood U of $z_{0} \in b \Omega$ if there are constants $c, C>0$ such that

$$
c \lambda_{j}(z) \leq \lambda_{k}(z) \leq C \lambda_{j}(z), \quad j, k=s, \ldots, s+l, \quad z \in U
$$

Definition 1.2. We say that a 1-dimensional analytic variety V has order of contact η at $z_{0} \in b \Omega$ if there are constants $c, C>0$ such that

$$
c\left|z-z_{0}\right|^{\eta} \leq|r(z)| \leq C\left|z-z_{0}\right|^{\eta}
$$

for all $z \in V$ sufficiently close to z_{0}.
Example. Let $\Omega \subset \mathbb{C}^{4}$ be a domain defined by

$$
\Omega=\left\{z: r(z)=2 R e z_{4}+\left|z_{1}\right|^{10}+\left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)^{11 / 3}<0\right\} .
$$

Then, $\Delta_{1}(0)=10=\Delta_{1}^{\text {Reg }}(0), \Delta_{2}(0)=\frac{22}{3}$, and $V=\{(t, 0,0,0):|t| \leq a\}$ is a smooth variety whose order of contact with $b \Omega$ at 0 is 10 . Set $L_{j}=$ $\frac{\partial}{\partial z_{j}}-\left(\frac{\partial r}{\partial z_{4}}\right)^{-1} \frac{\partial r}{\partial z_{j}} \frac{\partial}{\partial z_{4}}, j=1,2,3$. Then, the eigenvalues $\lambda_{k}(z) \approx \partial \bar{\partial} r(z)\left(L_{k}, \bar{L}_{k}\right)$, $k=2,3$, are comparable near 0 .

In this paper, we want to study a necessary condition for the Hölder estimates of the $\bar{\partial}$ equation when $(n-2)$-eigenvalues of the Levi-form are comparable and $\Delta_{n-2}\left(z_{0}\right)<\infty$:

Theorem 1.3. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^{n}, $n \geq 3$, and assume that there is a smooth 1-dimensional variety whose order of contact at $z_{0} \in b \Omega$ is $\eta<\infty$. Also, assume that the ($n-2$)-eigenvalues of the Levi-forms are comparable in a neighborhood of $z_{0} \in b \Omega$ and $\Delta_{n-2}\left(z_{0}\right)<\infty$. If there exist a neighborhood U of z_{0} and a constant $C \geq 0$ so that for each $v \in L_{\infty}^{0,1}(\Omega)$ with $\bar{\partial} v=0$, there is a $u \in L^{2}(\Omega) \cap \Lambda_{\kappa}(U \cap \bar{\Omega})$ such that $\bar{\partial} u=v$ on Ω and

$$
\begin{equation*}
\|u\|_{\Lambda_{\kappa}(U \cap \bar{\Omega})} \leq C\|v\|_{L_{\infty}(\Omega)}, \tag{1.2}
\end{equation*}
$$

then $\kappa \leq \frac{1}{\eta}$.

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ be local coordinates about z_{0}. In the rest of this paper, we set $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right), z^{\prime \prime}=\left(z_{2}, \ldots, z_{n-1}\right)$, and the same notations will be used for other coordinates or multi-indices, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, that is, $\alpha^{\prime}=$ $\left(\alpha_{2}, \ldots, \alpha_{n}\right)$, and $\alpha^{\prime \prime}=\left(\alpha_{2}, \ldots, \alpha_{n-1}\right)$, etc.

Remark 1.4. (1) Since V is a smooth analytic variety, we note that η is a positive integer and $\Delta_{n-1}\left(z_{0}\right):=m_{n-1} \leq \eta$. Thus, we have $\kappa \leq \frac{1}{\eta} \leq \frac{1}{m_{n-1}}$ in (1.2) which improves Krantz's result.
(2) In following, we will fix z_{1} and consider the z_{1} slice of Ω :

$$
\begin{equation*}
\Omega_{z_{1}}:=\left\{\left(z_{1}, z^{\prime}\right):\left(z_{1}, z^{\prime}\right) \in \Omega\right\} \tag{1.3}
\end{equation*}
$$

Then, $\Omega_{z_{1}}$ can be regarded as a bounded pseudoconvex domain in \mathbb{C}^{n-1}. Since the ($n-2$)-eigenvalues of the Levi-form are comparable, the condition $\Delta_{n-2}\left(z_{0}\right)<\infty$ will play as the role of the condition $\Delta_{1}\left(z_{0}\right)<\infty$ on each $\Omega_{z_{1}}$.
(3) If $n=3$, the comparable eigenvalues condition of the Levi form holds vacuously. In this case, You [14] proved Theorem 1.3. Note that $\Delta_{2}\left(z_{0}\right) \leq$ $\Delta_{1}^{\text {Reg }}\left(z_{0}\right)$ when $n=3$. Consider the domain in \mathbb{C}^{3} (see [8]) defined by

$$
r(z)=\operatorname{Re} z_{3}+\left|z_{1}^{2}-z_{2}^{3}\right|^{2}
$$

Then $\Delta_{1}^{\text {Reg }}(0)=6$, and $\Delta_{2}(0)=4$ while $\Delta_{1}(0)=\infty$ as the complex analytic curve $\gamma(t)=\left(t^{3}, t^{2}, 0\right)$ lies in the boundary. Note that $\gamma(t)$ is not a smooth curve.
(4) Whenever we have $(n-2)$-positive eigenvalues, these eigenvalues are comparable and hence Theorem 1.3 implies the results in [7] where we assumed that we have $(n-2)$-positive eigenvalues and $\Delta_{1}\left(z_{0}\right)<\infty$.

In Section 2, we construct special coordinates at each reference point and show that the z_{1}-coordinate represents the given variety V, and the $z^{\prime \prime}$-directions represent the comparable Levi-form directions. Let $C_{b}\left(z_{0}, \delta_{0}\right)$ denote the curve close to the z_{1}-direction as defined in (2.8). To prove the main theorem (Theorem 1.3), for each small $\delta>0$, we need to construct a uniformly bounded holomorphic function f_{δ} on Ω that satisfies

$$
\begin{equation*}
\left|\frac{\partial f_{\delta}}{\partial z_{n}}\left(z_{\delta}\right)\right| \geq \frac{1}{\delta} \tag{1.4}
\end{equation*}
$$

for each $z_{\delta} \in C_{b}\left(z_{0}, \delta_{0}\right)$.
In Section 2, we fix $z_{1}=\check{z}_{1}$ near $z_{1}=\delta^{\frac{1}{\eta}}$ and consider the sliced domain $\Omega_{\check{z}_{1}}$. Then, we construct a family of plurisubharmonic functions with maximal Hessian on each thin neighborhood of $b \Omega_{\check{z}_{1}}$ as in [1] for $n=2$ case, and then show a bumping theorem. In Section 3, we push out the boundary of the domain $\Omega_{\check{z}_{1}}$ as far as possible at each reference point $\tilde{z}_{\delta} \in b \Omega_{\tilde{z}_{1}}$. These are some of the main ingredients for a construction of f_{δ} in (1.4). Section 4 is devoted to proving Theorem 1.3.
Remark 1.5. Note that the bumping theorem or pushing out the domains are done for the domains with $\Delta_{1}\left(z_{0}\right)<\infty[2,3,5]$. In this paper, the condition
$\Delta_{1}\left(z_{0}\right)<\infty$ is replaced by the conditions $\Delta_{n-2}\left(z_{0}\right)<\infty$ and the compatibility of the ($n-2$)-eigenvalues.

2. Special coordinates and polydiscs

In the sequel, we assume that Ω is a smoothly bounded pseudoconvex domain in $\mathbb{C}^{n}, n \geq 3$, with smooth defining function r_{0} and that there is a smooth 1 dimensional holomorphic curve V whose order of contact with $b \Omega$ at $z_{0} \in b \Omega$ is equal to η and $\Delta_{n-2}\left(z_{0}\right)<\infty$. We also assume that the $(n-2)$-eigenvalues of the Levi-form are comparable in a neighborhood W of z_{0}. We may assume that there are coordinate functions $\tilde{z}=\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)$ near z_{0} such that $\tilde{z}\left(z_{0}\right)=0$ and $\left|\partial r_{0} / \partial \tilde{z}_{n}\right| \geq c_{0}$ in W for some fixed constant $c_{0}>0$.

Using these \tilde{z}-coordinates, set

$$
\begin{aligned}
L_{n} & =\frac{\partial}{\partial \tilde{z}_{n}} \text { and } \\
L_{k} & =\frac{\partial}{\partial \tilde{z}_{k}}-\left(\frac{\partial r_{0}}{\partial \tilde{z}_{n}}\right)^{-1} \frac{\partial r_{0}}{\partial \tilde{z}_{k}} \frac{\partial}{\partial \tilde{z}_{n}}, \quad k=1, \ldots, n-1,
\end{aligned}
$$

set

$$
c_{i j}(\tilde{z}):=\partial \bar{\partial} r_{0}\left(L_{i}, \bar{L}_{j}\right)(\tilde{z}), \quad i, j=1, \ldots, n-1
$$

and assume that the eigenvalues of the matrix $A:=\left(c_{i j}\right)_{2 \leq i, j \leq n-1}$ are comparable. Let m be the smallest integer bigger than or equal to $\Delta_{n-2}\left(z_{0}\right)\left(\Delta_{n-2}\left(z_{0}\right)\right.$ could be a rational number). Here we may also assume that $\eta \geq m$. As in Proposition 2.3 in [6], we can prove that there are coordinate functions $z=\left(z_{1}, \ldots, z_{n}\right)$ near $z_{0}=0$ such that the given smooth one dimensional variety V can be regarded as the z_{1}-axis:
Proposition 2.1. Let $\Omega, r_{0}, z_{0} \in b \Omega$ and $W \ni z_{0}$ be as above. There is a biholomorphism $\Phi_{0}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}, \Phi_{0}(z)=\tilde{z}, \Phi_{0}(0)=z_{0}$ such that in terms of z coordinates, $r(z):=r_{0} \circ \Phi_{0}(z)$ can be written as

$$
\begin{align*}
r(z)= & R e z_{n}+\sum_{\substack{j+k=\eta \\
j, k>0}} a_{j, k} z_{1}^{j} \bar{z}_{1}^{k}+\sum_{\substack{\left|\alpha^{\prime \prime}+\beta^{\prime \prime}\right| \leq m \\
\left|\alpha^{\prime \prime}\right|,\left|\beta^{\prime \prime}\right|>0}} b_{\alpha^{\prime \prime} \beta^{\prime \prime}} z^{\alpha^{\prime \prime}} \bar{z}^{\beta^{\prime \prime}} \tag{2.1}\\
& +\sum_{\substack{1 \leq j+k \leq \eta \\
1 \leq\left|\alpha^{\prime \prime}+\beta^{\prime \prime}\right| \leq m}} c_{\alpha^{\prime \prime} \beta^{\prime \prime}}^{j, k} z_{1}^{j} \bar{z}_{1}^{k} z^{\alpha^{\prime \prime}} \bar{z}^{\beta^{\prime \prime}}+\mathcal{O}\left(E_{m, \eta}(z)\right),
\end{align*}
$$

where $E_{m, \eta}(z)=|z|\left|z_{n}\right|+\left|z_{1}\right|^{\eta+1}+\left|z^{\prime \prime}\right|^{m+1}$, and $r(z)$ satisfies

$$
\begin{equation*}
c|t|^{\eta} \leq|r(t, 0, \ldots, 0,0)| \leq C|t|^{\eta} \tag{2.2}
\end{equation*}
$$

for some constants $c, C>0$.
Remark 2.2. (1) Let $d_{0}\left(z_{1}\right):=\sum_{j+k=\eta} a_{j, k} z_{1}^{j} \bar{z}_{1}^{k}$ be the first sum in (2.1). Then it follows from (2.1) and (2.2) that

$$
\begin{equation*}
\left|d_{0}\left(z_{1}\right)\right| \approx\left|r\left(z_{1}, 0^{\prime}\right)\right| \approx\left|z_{1}\right|^{\eta} . \tag{2.3}
\end{equation*}
$$

(2) The coordinate change in Proposition 2.1 is about $z_{0}=0 \in b \Omega$, but not about arbitrary point $\tilde{z} \in W$.

In the rest of this section, we fix $\delta>0$ and assume that $\check{z}=\left(\check{z}_{1}, \check{z}^{\prime \prime}, \check{z}_{n}\right) \in W$ satisfies

$$
\begin{equation*}
\left|\check{z}_{1}-\delta^{\frac{1}{\eta}}\right|<\gamma \delta^{\frac{1}{\eta}} \tag{2.4}
\end{equation*}
$$

for a sufficiently small $\gamma>0$. Let us fix \check{z}_{1} satisfying (2.4) and consider the \check{z}_{1}-slice defined in (1.3). Then for each \check{z}^{\prime} with $\left(\check{z}_{1}, \check{z}^{\prime}\right) \in W$, we can remove the pure terms in the $z^{\prime \prime}$ (or $\bar{z}^{\prime \prime}$) variables inductively in the Taylor series expansion of $r_{\check{z}_{1}}=r\left(\check{z}_{1}, \cdot\right)$ as in the proof of Proposition 1.1 in [1]:
Proposition 2.3. For each fixed $\check{z}=\left(\check{z}_{1}, \check{z}^{\prime}\right) \in W$, where \check{z}_{1} satisfies (2.4), there exist numbers $d_{\alpha^{\prime \prime}}(\check{z})$, depending smoothly on \check{z}, such that in the new coordinates $\zeta=\left(\check{z}_{1}, \zeta^{\prime}\right)$ defined by

$$
z=\left(z_{1}, \Phi_{\check{z}}\left(\zeta^{\prime}\right)\right)=\left(\check{z}_{1}, \check{z}^{\prime \prime}+\zeta^{\prime \prime}, \check{z}_{n}+\Phi_{n}\left(\zeta^{\prime}\right)\right),
$$

where

$$
\Phi_{n}\left(\zeta^{\prime}\right)=\left(\frac{\partial r}{\partial \tilde{z}_{n}}(\check{z})\right)^{-1}\left(\frac{\zeta_{n}}{2}-\sum_{l=1}^{m} \sum_{\left|\alpha^{\prime \prime}\right|=l} d_{\alpha^{\prime \prime}}(\check{z}) \zeta^{\alpha^{\prime \prime}}\right)
$$

and the function $\rho\left(\check{z}_{1}, \zeta^{\prime}\right):=r \circ\left(\check{z}_{1}, \Phi_{\check{z}}\left(\zeta^{\prime}\right)\right)$ satisfies

$$
\begin{equation*}
\rho\left(\check{z}_{1}, \zeta^{\prime}\right)=r(\check{z})+\operatorname{Re} \zeta_{n}+\sum_{\substack{\left|\alpha^{\prime \prime}+\beta^{\prime \prime}\right| \leq m \\\left|\alpha^{\prime \prime}\right|,\left|\beta^{\prime \prime}\right|>0}} c_{\alpha^{\prime \prime} \beta^{\prime \prime}}(\check{z}) \zeta^{\alpha^{\prime \prime}} \bar{\zeta}^{\beta^{\prime \prime}}+\mathcal{O}\left(E\left(\check{z}_{1}, \zeta^{\prime}\right)\right), \tag{2.5}
\end{equation*}
$$

where $E\left(\check{z}_{1}, \zeta^{\prime}\right)=\left|\zeta_{n}\right||\zeta|+\left|\check{z}_{1}\right|^{\eta+1}+\left|\zeta^{\prime \prime}\right|^{m+1}$.
Remark 2.4. (1) Set $2 \kappa_{0}:=\max _{\alpha^{\prime \prime}, \beta^{\prime \prime}}\left|c_{\alpha^{\prime \prime} \beta^{\prime \prime}}\left(z_{0}\right)\right|$. Since $\Delta_{n-2}\left(z_{0}\right) \leq m$, we have $\kappa_{0}>0$. Therefore it follows that

$$
\begin{equation*}
\max _{\alpha^{\prime \prime}, \beta^{\prime \prime}}\left|c_{\alpha^{\prime \prime} \beta^{\prime \prime}}(\check{z})\right| \geq \kappa_{0}>0 \tag{2.6}
\end{equation*}
$$

independent of \check{z} provided W is sufficiently small because $c_{\alpha^{\prime \prime} \beta^{\prime \prime}}(\check{z})$ are smooth in \check{z}.
(2) By setting $\zeta_{1}=\check{z}_{1}$ and $\zeta=\left(\check{z}_{1}, \zeta^{\prime}\right)$, we may regard that $\Phi_{\check{z}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, that is,

$$
\Phi_{\check{z}}(\zeta)=\left(\check{z}_{1}, z^{\prime}\right) .
$$

(3) For each $z=\left(z_{1}, z^{\prime \prime}, z_{n}\right) \in W$, define $\pi(z):=\left(z_{1}, z^{\prime \prime}, \pi_{n}(z)\right) \in b \Omega$, where $\pi_{n}(z)$ is the projection onto $b \Omega$ along the z_{n} direction. For each \check{z}_{1} satisfying (2.4), set $\tilde{z}=\left(\check{z}_{1}, 0^{\prime}\right)$ and set $\check{z}=\pi(\tilde{z})=\left(\check{z}_{1}, 0^{\prime \prime}, \pi_{n}(\tilde{z})\right) \in b \Omega$. Using a Taylor series in the variable z_{n} about $\pi_{n}(\tilde{z})$, we see that

$$
r\left(\check{z}_{1}, 0^{\prime}\right)=2 \operatorname{Re}\left[\frac{\partial r(\check{z})}{\partial z_{n}}\left[-\pi_{n}(\tilde{z})\right]\right]+\mathcal{O}\left(\pi_{n}(\tilde{z})^{2}\right) .
$$

Since $\left|\pi_{n}(\tilde{z})\right| \ll 1$ and $2\left|\frac{\partial r}{\partial z_{n}}\right|=1+\mathcal{O}(|z|) \geq \frac{1}{2}$ on W, it follows from (2.3) that

$$
\left|\pi_{n}(\tilde{z})\right| \approx\left|r\left(\check{z}_{1}, 0^{\prime}\right)\right| \approx\left|d_{0}\left(\check{z}_{1}\right)\right| \approx\left|\check{z}_{1}\right|^{\eta} .
$$

For each small $\delta>0$, set $\tilde{z}_{\delta}=\left(\delta^{\frac{1}{n}}, 0^{\prime}\right)$ (i.e., $\check{z}_{1}=\delta^{\frac{1}{n}}$) and set

$$
\begin{equation*}
\check{z}_{\delta}:=\pi\left(\tilde{z}_{\delta}\right):=\left(\delta^{\frac{1}{n}}, 0^{\prime \prime}, \pi_{n}\left(\tilde{z}_{\delta}\right)\right) \in b \Omega . \tag{2.7}
\end{equation*}
$$

For a sufficiently small $b>0$, set $z_{\delta}:=\left(\delta^{\frac{1}{\eta}}, 0^{\prime \prime}, \pi_{n}\left(\tilde{z}_{\delta}\right)-b \delta\right) \in \Omega$, and set

$$
\begin{equation*}
C_{b}\left(z_{0}, \delta_{0}\right):=\left\{z_{\delta}: 0 \leq \delta \leq \delta_{0}\right\} \cup\left\{z_{0}\right\} \subset \Omega \cup\left\{z_{0}\right\} \tag{2.8}
\end{equation*}
$$

where $\delta_{0}>0$ is a sufficiently small number such that $z_{\delta} \in W$ for all $0 \leq \delta \leq \delta_{0}$.
We will use the methods developed in [4-6] on each domain $\Omega_{\tilde{z}_{1}}$ keeping track of the dependence of the \check{z}_{1} variable. For each $\check{z}=\left(\check{z}_{1}, \check{z}^{\prime}\right) \in W$, set

$$
\begin{equation*}
C_{s_{2}}(\check{z})=\max \left\{\left|c_{\alpha^{\prime \prime} \beta^{\prime \prime}}(\check{z})\right|:\left|\alpha^{\prime \prime}+\beta^{\prime \prime}\right|=s_{2}\right\}, \tag{2.9}
\end{equation*}
$$

where $c_{\alpha^{\prime \prime} \beta^{\prime \prime}}(\check{z})$ is defined in (2.5), and for each $\epsilon>0$, define

$$
\begin{equation*}
\tau(\check{z}, \epsilon)=\min _{2 \leq s_{2} \leq m}\left\{\left(\epsilon / C_{s_{2}}(\check{z})\right)^{1 / s_{2}}\right\} . \tag{2.10}
\end{equation*}
$$

Note that $\tau(\check{z}, \epsilon)$ is well defined by (2.6) and it follows from (2.9) and (2.10) that

$$
\begin{aligned}
\epsilon^{1 / 2} & \lesssim \tau(\check{z}, \epsilon) \lesssim \epsilon^{1 / m}, \text { and } \\
\left(\epsilon^{\prime} / \epsilon\right)^{\frac{1}{2}} \tau(\check{z}, \epsilon) & \leq \tau\left(\check{z}, \epsilon^{\prime}\right) \leq\left(\epsilon^{\prime} / \epsilon\right)^{\frac{1}{m}} \tau(\check{z}, \epsilon), \text { if } \epsilon^{\prime}<\epsilon .
\end{aligned}
$$

In the sequel, set $\check{\zeta}=\left(\check{z}_{1}, 0^{\prime}\right)$. Note that $\Phi_{\check{z}}(\check{\zeta})=\check{z}$. For each $c>0$ and $\epsilon>0$, define

$$
R_{c \epsilon}^{\delta}(\check{z})=\left\{\zeta:\left|\zeta_{1}-\check{z}_{1}\right|<c \delta^{\frac{1}{n}},\left|\zeta_{k}\right|<c \tau(\check{z}, \epsilon), k=2, \ldots, n-1,\left|\zeta_{n}\right|<c \epsilon\right\},
$$

and set

$$
Q_{c \epsilon}^{\delta}(\check{z})=\left\{\left(\zeta_{1}, \Phi_{\check{z}}\left(\zeta^{\prime}\right)\right) ;\left(\zeta_{1}, \zeta^{\prime}\right) \in R_{c \epsilon}^{\delta}(\check{z})\right\} .
$$

Also, we set
(2.11) $R_{c \epsilon}^{\prime}(\check{z})=\left\{\left(\check{z}_{1}, \zeta_{2}, \ldots, \zeta_{n}\right):\left|\zeta_{k}\right|<c \tau(\check{z}, \epsilon), k=2, \ldots, n-1,\left|\zeta_{n}\right|<c \epsilon\right\}$,
a polydisc in the ζ^{\prime} variables, and

$$
Q_{c \epsilon}^{\prime}\left(\check{z}^{\prime}\right)=\left\{\left(\check{z}_{1}, \Phi_{\check{z}}\left(\zeta^{\prime}\right)\right):\left(\check{z}_{1}, \zeta^{\prime}\right) \in R_{c \epsilon}^{\prime}\left(\check{z}^{\prime}\right)\right\} .
$$

As in Proposition 1.7 in [1], there exists an independent constant $C>0$ such that if $z=\left(\check{z}_{1}, z^{\prime}\right) \in Q_{\epsilon}^{\prime}(\check{z})$, then

$$
Q_{\epsilon}^{\prime}(z) \subset Q_{C \epsilon}^{\prime}(\check{z}), \text { and } Q_{\epsilon}^{\prime}(\check{z}) \subset Q_{C \epsilon}^{\prime}(z)
$$

In view of (2.6), we note that the same inclusion relations hold if we fix \check{z}^{\prime} and vary \check{z}_{1}. Thus, we obtain that

$$
Q_{\epsilon}^{\delta}(z) \subset Q_{C \epsilon}^{\delta}(\check{z}), \quad \text { and } Q_{\epsilon}^{\delta}(\check{z}) \subset Q_{C \epsilon}^{\delta}(z), \quad \text { if } z \in Q_{\epsilon}^{\delta}(\check{z}) .
$$

Again, by (2.6), we also have the following equivalence relations for $\tau(z, \epsilon)$ (Proposition 2.14 in [6]).

Proposition 2.5. Assume $z=\left(\check{z}_{1}, z^{\prime}\right) \in Q_{c \epsilon}^{\delta}(\check{z})$. Then

$$
\begin{equation*}
\tau(z, \epsilon) \approx \tau(\check{z}, \epsilon) \tag{2.12}
\end{equation*}
$$

for all sufficiently small $c>0$, independent of $\delta>0$ and $\epsilon>0$.

In the sequel, set $D_{k}=\frac{\partial}{\partial \zeta_{k}}$ or $\frac{\partial}{\partial \bar{\zeta}_{k}}, 1 \leq k \leq n$, and set $\tau_{1}=\delta^{\frac{1}{n}}$. Recall that $\check{\zeta}=\left(\check{z}_{1}, 0^{\prime}\right)$. Combining (2.4), (2.9) and (2.10), the error term $E\left(\check{z}_{1}, \zeta^{\prime}\right)$ in (2.5) satisfies

$$
\begin{align*}
\left|D_{1}^{l_{1}} E(\check{\zeta})\right| & \lesssim \tau_{1}^{\eta+1-l_{1}}=\delta \tau_{1}^{-l_{1}+1}, \quad \text { and } \\
D_{1}^{l_{1}} D^{\nu^{\prime \prime}} E(\check{\zeta}) & =0, \text { if } 0<\left|\nu^{\prime \prime}\right| \leq m \tag{2.13}
\end{align*}
$$

Proposition 2.6. Assume $\check{z}=\left(\check{z}_{1}, \check{z}^{\prime}\right) \in W$ satisfies (2.4) and assume that $|r(\check{z})| \lesssim \delta$. For each l_{1}, and for each multi index $\nu^{\prime \prime}=\left(\nu_{2}, \ldots, \nu_{n-1}\right)$ with $0<\left|\nu^{\prime \prime}\right| \leq m$, we have

$$
\begin{align*}
\left|D_{1}^{l_{1}} \rho(\check{\zeta})\right| & \lesssim \delta \tau_{1}^{-l_{1}}, \quad \text { and } \\
\left|D^{\nu^{\prime \prime}} \rho(\check{\zeta})\right| & \lesssim \tau \tau(\check{z}, \epsilon)^{-\left|\nu^{\prime \prime}\right|} . \tag{2.14}
\end{align*}
$$

Proof. From (2.1), (2.2) and (2.13), it follows that

$$
\left|D_{1}^{l_{1}} \rho(\check{\zeta})\right|=\left|D_{1}^{l_{1}} r(\check{z})\right| \lesssim \delta \tau_{1}^{-l_{1}}
$$

and the second estimates follows from (2.5), (2.9), (2.10) and (2.13)
For each fixed $\delta>0$, set $\check{z}_{1}=\delta^{1 / \eta}$ and consider $\delta^{1 / \eta}$-slice of $\Omega, \Omega_{\delta^{1 / \eta}}$. For convenience of notation, set $\Omega_{\delta}=\Omega_{\delta^{1 / \eta}}$. Then Ω_{δ} is a smoothly bounded pseudoconvex domain in \mathbb{C}^{n-1} with comparable Levi-form near $\check{z}_{\delta} \in b \Omega_{\delta}$ where $\check{z}_{\delta}=\pi\left(\delta^{\frac{1}{\eta}}, 0^{\prime}\right)$ is defined in (2.7). Since $\Delta_{n-2}\left(\check{z}_{\delta}\right) \leq m$, and the Levi-forms are comparable, it follows that $\Delta_{1}\left(\check{z}_{\delta}\right) \leq m$ (Proposition 2.12 in [6]).

To push out the domain Ω_{δ} as far as possible at the reference point $\check{z}_{\delta} \in b \Omega_{\delta} \cap$ W, we need to construct bounded plurisubharmonic functions with maximal Hessian in a thin strip neighborhood of $b \Omega_{\delta}$ as in Theorem 3.1 in [1]. Set $r_{\delta}\left(z^{\prime}\right)=r\left(\delta^{\frac{1}{n}}, z^{\prime}\right)$, and for each small $\epsilon>0$, define

$$
\begin{aligned}
\Omega_{\delta}^{\epsilon} & =\left\{\left(\delta^{\frac{1}{n}}, z^{\prime}\right): r_{\delta}\left(z^{\prime}\right)<\epsilon\right\}, \\
S_{\delta}(\epsilon) & =\left\{\left(\delta^{\frac{1}{n}}, z^{\prime}\right):-\epsilon<r_{\delta}\left(z^{\prime}\right)<\epsilon\right\}, \text { and } \\
S_{\delta}^{-}(\epsilon) & =\left\{\left(\delta^{\frac{1}{n}}, z^{\prime}\right):-\epsilon<r_{\delta}\left(z^{\prime}\right) \leq 0\right\} .
\end{aligned}
$$

Using the estimates (2.12) and (2.14), we can prove the following theorem as in the proof of Theorem 3.1 in [5]:

Proposition 2.7. For all small $\epsilon>0$, there is a plurisubharmonic function $\lambda_{\delta}^{\epsilon} \in C^{\infty}\left(W \cap \Omega_{\delta}\right)$ with the following properties:
(i) $\left|\lambda_{\delta}^{\epsilon}(z)\right| \leq 1, z=\left(\delta^{\frac{1}{n}}, z^{\prime}\right) \in \Omega_{\delta} \cap W$,
(ii) for all $L^{\prime}=\sum_{k=2}^{n} a_{k} L_{k}$ at $z=\left(\delta^{\frac{1}{n}}, z^{\prime}\right) \in S_{\delta}^{-}(\epsilon) \cap W$,

$$
\partial \bar{\partial} \lambda_{\delta}^{\epsilon}\left(L^{\prime}, \bar{L}^{\prime}\right)(z) \approx \tau(z, \epsilon)^{-2} \sum_{k=2}^{n-1}\left|a_{k}\right|^{2}+\epsilon^{-2}\left|a_{n}\right|^{2}, \text { and }
$$

(iii) if $\Phi_{\check{z}}\left(\zeta^{\prime}\right)$ is the map associated with a given $\check{z}=\left(\delta^{\frac{1}{\eta}}, \check{z}^{\prime}\right) \in S_{\delta}(\epsilon) \cap W$, then

$$
\left|D^{\alpha^{\prime}}\left(\lambda_{\delta}^{\epsilon} \circ \Phi_{\check{z}}\left(\zeta^{\prime}\right)\right)\right| \leq C_{\alpha}^{\prime} \epsilon^{-\alpha_{n}} \tau(\check{z}, \epsilon)^{-\left|\alpha^{\prime \prime}\right|}
$$

holds for all $\zeta^{\prime} \in R_{\epsilon}^{\prime}(\check{z})$ where $\alpha^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{n}\right)$, and $\alpha^{\prime \prime}=\left(\alpha_{2}, \ldots, \alpha_{n-1}\right)$, and $R_{\epsilon}^{\prime}(\breve{z})$ is defined in (2.11).
Remark 2.8. In Theorem 2.3 of [2], the author proved a bumping theorem near a point $z_{0} \in \Omega$ of finite 1-type. All we need for that theorem is the existence of a family of plurisubharmonic functions with maximal Hessian on each thin strip $S_{\delta}(\epsilon)$ as stated above in Proposition 2.7. Since $\Delta_{n-2}\left(\check{z}_{\delta}\right) \leq m$ and the Levi-form is comparable, it follows that $\Delta_{1}\left(\check{z}_{\delta}\right) \leq m$ (Proposition 2.12 in [6]).

Recall that $\check{z}_{\delta}=\pi\left(\delta^{\frac{1}{n}}, 0^{\prime}\right) \in b \Omega_{\delta}$ defined in (2.7). In the sequel, for each $\check{z}=\left(\check{z}_{1}, \check{z}^{\prime}\right)$, set $B_{c}^{\prime}(\check{z})=\left\{\left(\check{z}_{1}, z^{\prime}\right):\left|z^{\prime}-\check{z}^{\prime}\right|<c\right\}, c>0$. Using the family of plurisubharmonic functions $\lambda_{\delta}^{\epsilon}$ in Proposition 2.7, we have the following bumping theorem for each Ω_{δ} as in [2]:

Theorem 2.9. Let $V \subset \subset W$ be a small neighborhood of $z_{0} \in b \Omega$. There exists an independent constant $r_{0}>0$ such that for each $\check{z}_{\delta} \in \bar{V} \cap b \Omega_{\delta}$, we have $B_{2 r_{0}}^{\prime}\left(\check{z}_{\delta}\right) \subset \subset W \cap\left\{\left(\delta^{\frac{1}{\eta}}, z^{\prime}\right) \in \mathbb{C}^{n}\right\}$, and there is a smooth 1-parameter family of pseudoconvex domains $\Omega_{\delta}^{t}, 0 \leq t<t_{0}$, called the bumping family of Ω_{δ} with front $B_{2 r_{0}}^{\prime}\left(\check{z}_{\delta}\right)$, each defined by $\Omega_{\delta}^{t}=\left\{\left(\delta^{\frac{1}{\eta}}, z^{\prime}\right): r_{\delta}^{t}\left(z^{\prime}\right)<0\right\}$ where $r_{\delta}^{t}\left(z^{\prime}\right)=r^{t}\left(\delta, z^{\prime}\right)$ has the following properties;
(1) $r_{\delta}^{t}\left(z^{\prime}\right)$ is smooth in $z=\left(\delta, z^{\prime}\right) \in W$ and in t for $0 \leq t<t_{0}$.
(2) $r_{\delta}^{t}\left(z^{\prime}\right)=r_{\delta}\left(z^{\prime}\right)$ for $\left(\delta^{\frac{1}{n}}, z^{\prime}\right) \notin B_{2 r_{0}}^{\prime}\left(\check{z}_{\delta}\right)$.
(3) $\frac{\partial r_{\delta}^{t}}{\partial t}\left(z^{\prime}\right) \leq 0$.
(4) $r_{\delta}^{0}\left(z^{\prime}\right)=r_{\delta}\left(z^{\prime}\right)=r\left(\delta^{\frac{1}{n}}, z^{\prime}\right)$.
(5) for $z=\left(\delta^{\frac{1}{n}}, z^{\prime}\right) \in B_{2 r_{0}}^{\prime}\left(\check{z}_{\delta}\right), \frac{\partial r_{\delta}^{t}}{\partial t}\left(z^{\prime}\right)<0$.

3. A construction of special functions

In this section, we construct a family of uniformly bounded holomorphic functions $\left\{f_{\delta}\right\}_{\delta>0}$ with large derivatives in the z_{n}-direction along the curve $C_{b}\left(z_{0}, \delta_{0}\right) \subset \Omega$ defined in (2.8). Let us fix $\delta>0$ for a while and concentrate on the point $\check{z}_{\delta} \in b \Omega_{\delta}$ defined in (2.7) where $\Omega_{\delta}:=\Omega_{\delta^{\frac{1}{\eta}}}=\left\{\left(\delta^{\frac{1}{n}}, z^{\prime}\right):\left(\delta^{\frac{1}{n}}, z^{\prime}\right) \in \Omega\right\}$. For a construction of $\left\{f_{\delta}\right\}_{\delta>0}$, we use "Bumping theorem" in Theorem 2.9 as well as pushing out $b \Omega_{\delta}$ as far as possible at each reference point \check{z}_{δ}.

Recall the function $\Phi_{z_{\delta}}(\zeta)=\left(\delta^{\frac{1}{\eta}}, \Phi_{z_{\delta}}\left(\zeta^{\prime}\right)\right)$ defined in Proposition 2.3. Set $\widetilde{W_{\delta}^{\prime}}=W \cap\left\{\left(\delta^{1 / \eta}, z^{\prime}\right): z^{\prime} \in \mathbb{C}^{n-1}\right\}, \Omega_{\delta}^{\prime}=\left(\Phi_{\check{z}_{\delta}}\right)^{-1}\left(\Omega_{\delta}\right)$ and set

$$
W_{\delta}^{\prime}=\left(\Phi_{\tilde{z}_{\delta}}\right)^{-1}\left(\widetilde{W}_{\delta}^{\prime}\right)
$$

Then Ω_{δ}^{\prime} is a smoothly bounded pseudoconvex domain in \mathbb{C}^{n-1} and the ($n-2$)eigenvalues are uniformly comparable, and the estimate (2.6) holds uniformly, independent of $\delta>0$. We want to construct a domain $D_{\delta}^{\prime} \subset \mathbb{C}^{n-1}$ which
contains Ω_{δ}^{\prime} such that the boundary of D_{δ}^{\prime} is pushed out essentially as far as possible near $\zeta^{\delta}=\left(\delta^{\frac{1}{\eta}}, 0^{\prime}\right)=\left(\Phi_{\check{z}_{\delta}}\right)^{-1}\left(\check{z}_{\delta}\right) \in b \Omega_{\delta}^{\prime}$, so that $b D_{\delta}^{\prime}$ is pseudoconvex.

Set

$$
\begin{equation*}
J_{\delta}\left(\zeta^{\prime}\right)=\left(\delta^{2}+\left|\zeta_{n}\right|^{2}+\sum_{2 \leq s_{2} \leq m} C_{s_{2}}\left(\check{z}_{\delta}\right)^{2}\left|\zeta^{\prime \prime}\right|^{2 s_{2}}\right)^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

where $C_{s_{2}}\left(\check{z}_{\delta}\right)$ is defined in (2.9), and let $r_{0}>0$ be the constant in Theorem 2.9. Note that $B_{2 r_{0}}^{\prime} \subset W_{\delta}^{\prime}$. For each small $e>0$, set

$$
W_{\delta, e}^{\prime}=\left\{\left(\delta^{1 / \eta}, \zeta^{\prime}\right) \in W_{\delta}^{\prime}: \rho\left(\delta^{\frac{1}{\eta}}, \zeta^{\prime}\right)<e J_{\delta}\left(\zeta^{\prime}\right)\right\} \cap B_{r_{0}}^{\prime}\left(\check{z}_{\delta}\right) .
$$

If we use the family $\left\{\lambda_{\delta}^{\epsilon}\right\}$ constructed in Proposition 2.7, and follow the methods in Section 4 of [1], we can show that $W_{\delta, e}^{\prime}$ is the maximally pushed out domain of Ω_{δ}^{\prime} near ζ^{δ} such that

$$
b W_{\delta, e}^{\prime}:=\left\{\left(\delta^{1 / \eta}, \zeta^{\prime}\right) \in W_{\delta}^{\prime}: \rho\left(\delta^{\frac{1}{n}}, \zeta^{\prime}\right)=e J_{\delta}\left(\zeta^{\prime}\right)\right\} \cap B_{r_{0}}^{\prime}\left(\check{z}_{\delta}\right)
$$

is pseudoconvex for all sufficiently small $e>0$.
To connect the pushed out part $W_{\delta, e}^{\prime}$ and Ω_{δ}^{\prime}, we use the bumping family $\left\{\Omega_{\delta}^{t}\right\}$ with front $B_{2 r_{0}}^{\prime}\left(\check{z}_{\delta}\right)$ as in Theorem 2.9. Set

$$
D_{t, \delta, e}^{\prime}=\left(\Omega_{\delta}^{t} \backslash B_{r_{0}}^{\prime}\left(\check{z}_{\delta}\right)\right) \cup\left(W_{\delta, e}^{\prime} \cap \Omega_{\delta}^{t}\right)
$$

Then $D_{t, \delta, e}^{\prime}$ becomes a pseudoconvex domain which is pushed out near $\zeta^{\delta}=$ $\left(\Phi_{\check{z}_{\delta}}\right)^{-1}\left(\check{z}_{\delta}\right)$ provided $t>0$ and $e>0$ are sufficiently small. In the sequel, we fix these $t=t_{0}$ and $e=e_{0}$ and set $D_{\delta}^{\prime}:=D_{t_{0}, \delta, e_{0}}^{\prime}$. Note that these choices of t_{0} and $e_{0}>0$ are independent of $\delta>0$. If we use the methods in Section 6 of [1] (or Section 3 of [4]), we see that there exists a $L^{2}\left(D_{\delta}^{\prime}\right)$ holomorphic function f_{δ} satisfying

$$
\begin{equation*}
\left|\frac{\partial f_{\delta}}{\partial \zeta_{n}}\left(z_{\delta}\right)\right| \geq \frac{1}{\delta} \tag{3.2}
\end{equation*}
$$

independent of δ, where $z_{\delta}=\left(\delta^{\frac{1}{\eta}}, 0^{\prime \prime}, \pi_{n}\left(\tilde{z}_{\delta}\right)-b \delta\right) \in C_{b}\left(z_{0}, \delta_{0}\right)$, and where $b>0$ is taken so that $C_{b}\left(z_{0}, \delta_{0}\right) \subset \Omega$. Note that f_{δ} is independent of z_{1} variable. We will show that f_{δ} is holomorphic in a domain including the z_{1} direction near $z_{1}=\delta^{\frac{1}{\eta}}$.

Recall that Ω_{δ}^{\prime} or D_{δ}^{\prime} can be regarded as domains in \mathbb{C}^{n-1} by fixing $\zeta_{1}=\delta^{\frac{1}{n}}$. In terms of the special coordinates $\zeta=\left(\check{z}_{1}, \zeta^{\prime}\right)$ defined in Proposition 2.3, set

$$
P_{c_{1}, \delta}\left(\check{z}_{\delta}\right):=\left\{\zeta:\left|\zeta_{1}-\delta^{\frac{1}{\eta}}\right|<c_{1} \delta^{\frac{1}{n}},\left|\zeta_{k}\right|<\frac{r_{0}}{2 n}, k=2, \ldots, n\right\},
$$

where r_{0} is the constant fixed in Theorem 2.9, and set

$$
\Omega_{c_{1}, \delta}\left(\check{z}_{\delta}\right)=P_{c_{1}, \delta}\left(\check{z}_{\delta}\right) \cap\{\zeta: \rho(\zeta)<0\} \subset \Omega .
$$

Also, for each $\delta>0, e>0$, and $c_{1}>0$, set

$$
\Omega_{c_{1}, \delta}^{e}\left(\check{z}_{\delta}\right)=P_{c_{1}, \delta}\left(\check{z}_{\delta}\right) \cap\left\{\left(\zeta_{1}, \zeta^{\prime}\right): \rho\left(\delta^{\frac{1}{n}}, \zeta^{\prime}\right)<e J_{\delta}\left(\zeta^{\prime}\right)\right\} \subset \mathbb{C}^{n} .
$$

Then $\Omega_{c_{1}, \delta}^{e}\left(\check{z}_{\delta}\right)$ is obtained by moving $W_{\delta, e}^{\prime}$ along the ζ_{1} direction.
Lemma 3.1. For sufficiently small $c_{1}>0$, we have $\Omega_{c_{1}, \delta}\left(\check{z}_{\delta}\right) \subset \subset \Omega_{c_{1}, \delta}^{e / 2}\left(\check{z}_{\delta}\right)$, or equivalently,

$$
\begin{equation*}
\rho\left(\delta^{\frac{1}{n}}, \zeta^{\prime}\right)-\rho(\zeta)<\frac{e}{2} J_{\delta}\left(\zeta^{\prime}\right) \text { for } \zeta=\left(\zeta_{1}, \zeta^{\prime}\right) \in \Omega_{c_{1}, \delta}\left(\check{z}_{\delta}\right) \tag{3.3}
\end{equation*}
$$

Proof. Assume $\zeta=\left(\zeta_{1}, \zeta^{\prime}\right) \in \Omega_{c_{1}, \delta}\left(\check{z}_{\delta}\right)$. Then

$$
\begin{equation*}
\left|\rho(\zeta)-\rho\left(\delta^{\frac{1}{n}}, \zeta^{\prime}\right)\right| \leq c_{1} \delta^{\frac{1}{\eta}} \max _{\left|\tilde{\zeta}_{1}-\delta^{\frac{1}{n}}\right|<c_{1} \delta^{\frac{1}{\eta}}}\left|D_{1} \rho\left(\tilde{\zeta}_{1}, \zeta^{\prime}\right)\right| . \tag{3.4}
\end{equation*}
$$

Note that $\Phi_{\check{z}_{\delta}}$ is independent of $\zeta_{1}=z_{1}$. Since $\rho(\zeta)=r \circ\left(\zeta_{1}, \Phi_{\tilde{z}_{\delta}}\left(\zeta^{\prime}\right)\right)$, it follows from (2.5), (2.14), (3.1), and a Taylor series that

$$
\begin{equation*}
\left|D_{1} \rho\left(\tilde{\zeta}_{1}, \zeta^{\prime}\right)\right| \lesssim \delta^{1-\frac{1}{\eta}} \lesssim \delta^{-\frac{1}{\eta}} J_{\delta}\left(\zeta^{\prime}\right) \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5), we obtain (3.3) provided $c_{1}>0$ is sufficiently small.

If we use the standard inequality:

$$
a b \leq \theta a^{p}+\theta^{-q / p} b^{q}, \quad \frac{1}{p}+\frac{1}{q}=1 \text { for all } \theta, a, b>0
$$

one obtains that

$$
\begin{equation*}
(a+b)^{s} \leq 2 a^{s}+(s!)^{s-1} b^{s}, s \geq 1 \tag{3.6}
\end{equation*}
$$

Since f_{δ} is independent of ζ_{1}, we see that f_{δ} is holomorphic on $\Omega_{c_{1}, \delta}^{e}\left(\check{z}_{\delta}\right)$. We will show that f_{δ} is bounded uniformly on $\bar{\Omega}_{a_{1}, \delta}^{e / 4}$ for some $a_{1}, 0<a_{1}<c_{1} \leq \frac{r_{0}}{2 n}$, to be determined. For each $q=\left(q_{1}, q^{\prime}\right) \in \bar{\Omega}_{a_{1}, \delta}^{e / 4}$, set $\tau_{1}=\delta^{\frac{1}{\eta}}, \tau_{k}=\tau\left(\check{z}_{\delta}, J_{\delta}\left(q^{\prime}\right)\right)$, $2 \leq k \leq n-1, \tau_{n}=J_{\delta}\left(q^{\prime}\right)$, and define a non-isotropic polydisc $Q_{a_{1}}^{\delta}(q)$ by

$$
Q_{a_{1}}^{\delta}(q):=\left\{\zeta:\left|\zeta_{k}-q_{k}\right|<a_{1} \tau_{k}, 1 \leq k \leq n\right\} .
$$

Lemma 3.2. There is an independent constant $0<a_{1}<c_{1}$ such that

$$
\begin{equation*}
Q_{a_{1}}^{\delta}(q) \subset \Omega_{a_{1}, \delta}^{e} \quad \text { for } \quad q=\left(q_{1}, q^{\prime}\right) \in \bar{\Omega}_{a_{1}, \delta}^{e / 4} \tag{3.7}
\end{equation*}
$$

Proof. Assume $\zeta \in Q_{a_{1}}^{\delta}(q)$. Then, it follows from (2.9), and (2.10) that

$$
\begin{align*}
C_{s_{2}}\left(\check{z}_{\delta}\right)^{2}\left|\zeta^{\prime \prime}-q^{\prime \prime}\right|^{2 s_{2}} & \leq(n-2)^{s_{2}} a_{1}^{2 s_{2}} C_{s_{2}}\left(\check{z}_{\delta}\right)^{2} \tau\left(\check{z}_{\delta}, J_{\delta}\left(q^{\prime}\right)\right)^{2 s_{2}} \tag{3.8}\\
& \leq(n-2)^{s_{2}} a_{1}^{2 s_{2}} J_{\delta}\left(q^{\prime}\right)^{2},
\end{align*}
$$

and $\left|\zeta_{n}-q_{n}\right|^{2} \leq a_{1}^{2} J_{\delta}\left(q^{\prime}\right)^{2}$. Thus, it follows from (3.1), (3.6), and (3.8) that

$$
\begin{aligned}
J_{\delta}\left(q^{\prime}\right)^{2}= & \delta^{2}+\left|q_{n}\right|^{2}+\sum_{s_{2}=2}^{m} C_{s_{2}}\left(\check{z}_{\delta}\right)^{2}\left|q^{\prime \prime}\right|^{2 s_{2}} \\
\leq & \delta^{2}+2\left|\zeta_{n}\right|^{2}+2\left|\zeta_{n}-q_{n}\right|^{2} \\
& +\sum_{s_{2}=2}^{m} C_{s_{2}}\left(\check{z}_{\delta}\right)^{2}\left(2\left|\zeta^{\prime \prime}\right|^{2 s_{2}}+\left(\left(2 s_{2}\right)!\right)^{2 s_{2}-1}\left|\zeta^{\prime \prime}-q^{\prime \prime}\right|^{2 s_{2}}\right) \\
\leq & 2 J_{\delta}\left(\zeta^{\prime}\right)^{2}+\left[2 m n^{m}((2 m)!)^{2 m-1} a_{1}^{2}\right] J_{\delta}\left(q^{\prime}\right)^{2} .
\end{aligned}
$$

If we take $a_{1}>0$ so that $2 m n^{m}((2 m)!)^{2 m-1} a_{1}^{2} \leq \frac{1}{2}$, we obtain that $J_{\delta}\left(q^{\prime}\right) \leq$ $2 J_{\delta}\left(\zeta^{\prime}\right)$. By the same argument, we have $J_{\delta}\left(\zeta^{\prime}\right) \leq 2 J_{\delta}\left(q^{\prime}\right)$. Therefore we obtain that

$$
\begin{equation*}
\frac{1}{2} J_{\delta}\left(q^{\prime}\right) \leq J_{\delta}\left(\zeta^{\prime}\right) \leq 2 J_{\delta}\left(q^{\prime}\right) \text { for } \zeta \in Q_{a_{1}}^{\delta}(q) \tag{3.9}
\end{equation*}
$$

Assume $q=\left(q_{1}, q^{\prime}\right) \in \bar{\Omega}_{a_{1}, \delta}^{e / 4}$ and $\zeta \in Q_{a_{1}}^{\delta}(q)$. Then, $\rho\left(\delta^{\frac{1}{\eta}}, q^{\prime}\right) \leq \frac{e}{4} J_{\delta}\left(q^{\prime}\right)$. Thus, we have

$$
\begin{equation*}
\rho\left(\delta^{\frac{1}{\eta}}, \zeta^{\prime}\right) \leq \frac{e}{4} J_{\delta}\left(q^{\prime}\right)+\left|\nabla^{\prime} \rho\left(\delta^{\frac{1}{n}}, \tilde{\zeta}^{\prime}\right) \cdot\left(\zeta^{\prime}-q^{\prime}\right)\right| \tag{3.10}
\end{equation*}
$$

for some $\left(\delta^{\frac{1}{\eta}}, \tilde{\zeta}^{\prime}\right) \in Q_{a_{1}}^{\delta}(q)$ where ∇^{\prime} denotes the gradient of the ζ^{\prime} variables. From (2.9), (2.10), and (2.14) (with ϵ replaced by $J_{\delta}\left(q^{\prime}\right)$), we obtain that

$$
\begin{equation*}
\left|D_{k} \rho\left(\delta^{\frac{1}{\eta}}, \tilde{\zeta}^{\prime}\right)\right| \lesssim J_{\delta}\left(q^{\prime}\right) \tau\left(\check{z}_{\delta}, J_{\delta}\left(q^{\prime}\right)\right)^{-1},\left(\delta^{\frac{1}{\eta}}, \tilde{\zeta}^{\prime}\right) \in Q_{a_{1}}^{\delta}(q), \tag{3.11}
\end{equation*}
$$

for $2 \leq k \leq n-1$, and $\left|D_{n} \rho\right| \lesssim 1$. Combining (3.9)-(3.11), we obtain that

$$
\rho\left(\delta^{\frac{1}{n}}, \zeta^{\prime}\right) \leq \frac{e}{2} J_{\delta}\left(\zeta^{\prime}\right)+C_{2} a_{1} J_{\delta}\left(q^{\prime}\right)<e J_{\delta}\left(\zeta^{\prime}\right)
$$

if we take $a_{1}>0$ so that $4 C_{2} a_{1}<e$. Therefore, $\zeta \in \Omega_{a_{1}, \delta}^{e}$ proving (3.7).
Remark 3.3. In the above discussion, $e>0$ is any number such that $0<e \leq e_{0}$. Thus, in particular, we can fix $e=e_{0}$ where e_{0} is fixed before (3.2).

Theorem 3.4. f_{δ} is a bounded holomorphic function in $\bar{\Omega}_{a_{1}, \delta}^{e / 4}$ and satisfies

$$
\begin{equation*}
\left|\frac{\partial f_{\delta}}{\partial \zeta_{n}}\left(z_{\delta}\right)\right| \geq \frac{1}{\delta}, z_{\delta} \in C_{b}\left(z_{0}, \delta_{0}\right), \tag{3.12}
\end{equation*}
$$

independent of δ.
Proof. By (3.2) and (3.3), we already know that there is a L^{2} holomorphic function f_{δ} on $\Omega_{c_{1}, \delta}^{e}\left(\check{z}_{\delta}\right)$ satisfying the estimate (3.12). We only need to show that f_{δ} is bounded in $\bar{\Omega}_{a_{1}, \delta}^{e / 4}$. Assume $q \in \bar{\Omega}_{a_{1}, \delta}^{e / 4} \subset \Omega_{c_{1}, \delta}^{e}$, where $0<a_{1}<$ c_{1}. Then $Q_{a_{1}}^{\delta}(q) \subset \Omega_{a_{1}, \delta}^{e} \subset \Omega_{c_{1}, \delta}^{e}$ by Lemma 3.2. Now if we use the mean value theorem on polydisc $Q_{a_{1}}^{\delta}(q) \subset \Omega_{c_{1}, \delta}^{e}$ and the fact that $f_{\delta} \in L^{2}\left(\Omega_{c_{1}, \delta}^{e}\right)$ is holomorphic, we will get the boundedness of f_{δ} on $\bar{\Omega}_{a_{1}, \delta}^{e / 4}$.

4. Proof of Theorem 1.3

The proof is similar to that in [7]. We will sketch the proof briefly here. Let $c_{1}>0$, and $a_{1}>0$ be the constants fixed in Lemma 3.1 and Lemma 3.2 respectively. We may assume that $0<2 b<a_{1} \leq c_{1}$. For each $\delta>0$, let f_{δ} be the function defined in Theorem 3.4. Therefore, f_{δ} is L^{2} holomorphic on $\Omega_{c_{1}, \delta}^{e}\left(\check{z}_{\delta}\right)$, bounded on $\bar{\Omega}_{a_{1}, \delta}^{e / 4}$, independent of ζ_{1} variable, and satisfies the estimates in (3.12). Set

$$
g_{\delta}=\phi\left(\frac{\left|\zeta_{1}-\delta^{\frac{1}{\eta}}\right|}{c_{1} \delta^{\frac{1}{\eta}}}\right) \phi\left(\frac{|\zeta|}{a_{1}}\right) \phi\left(\frac{\left|\zeta_{3}\right|}{a_{1}}\right) \cdots \phi\left(\frac{\left|\zeta_{n}\right|}{a_{1}}\right) f_{\delta}\left(0, \zeta^{\prime}\right),
$$

where

$$
\phi(t)= \begin{cases}1, & |t| \leq \frac{1}{2} \\ 0, & |t| \geq \frac{3}{4}\end{cases}
$$

Note that

$$
\left\|\bar{\partial} g_{\delta}\right\|_{L^{\infty}(\Omega)} \lesssim \delta^{-\frac{1}{\eta}}
$$

Assume that $u_{\delta} \in L^{2}(\Omega) \cap \Lambda_{\kappa}(U \cap \Omega)$ solves $\bar{\partial} u_{\delta}=\bar{\partial} g_{\delta}$ on Ω as in Theorem 1.3. Then we have

$$
\begin{equation*}
\|u\|_{\Lambda_{\kappa}(U \cap \bar{\Omega})} \leq C\left\|\bar{\partial} g_{\delta}\right\|_{L_{\infty}(\Omega)} \lesssim \delta^{-\frac{1}{\eta}} . \tag{4.1}
\end{equation*}
$$

Set $h_{\delta}=u_{\delta}-g_{\delta}$. Then h_{δ} is holomorphic in Ω. Set

$$
\begin{aligned}
q_{1}^{\delta}(\theta) & =\left(\delta^{1 / \eta}+\frac{4}{5} c_{1} \delta^{1 / \eta} e^{i \theta}, 0, \ldots, 0,-\frac{b \delta}{2}\right), \text { and } \\
q_{2}^{\delta}(\theta) & =\left(\delta^{1 / \eta}+\frac{4}{5} c_{1} \delta^{1 / \eta} e^{i \theta}, 0, \ldots, 0,-b \delta\right), \theta \in \mathbb{R} .
\end{aligned}
$$

Note that $g_{\delta}\left(q_{1}^{\delta}(\theta)\right)=g_{\delta}\left(q_{2}^{\delta}(\theta)\right)=0$. From (1.2) and (4.1) we obtain that

$$
\begin{equation*}
H_{\delta}:=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[u_{\delta}\left(q_{1}^{\delta}(\theta)\right)-u_{\delta}\left(q_{2}^{\delta}(\theta)\right)\right] d \theta\right| \lesssim \delta^{\kappa}\left\|\bar{\partial} g_{\delta}\right\|_{L^{\infty}} \lesssim \delta^{\kappa-\frac{1}{\eta}} \tag{4.2}
\end{equation*}
$$

For the lower bounds of H_{δ}, set $\zeta_{\delta}^{\prime}=\left(0^{\prime \prime},-\frac{b \delta}{2}\right), \tilde{\zeta}_{\delta}^{\prime}=\left(0^{\prime \prime},-b \delta\right), \zeta_{\delta}=\left(\delta^{\frac{1}{n}}, \zeta_{\delta}^{\prime}\right)$, and $\tilde{\zeta}_{\delta}=\left(\delta^{\frac{1}{n}}, \tilde{\zeta}_{\delta}^{\prime}\right)$. Then a Taylor's series of f_{δ} in ζ_{n} variable shows that

$$
f_{\delta}\left(0^{\prime \prime}, \zeta_{n}\right)=f_{\delta}\left(\zeta_{\delta}^{\prime}\right)+\frac{\partial f_{\delta}}{\partial \zeta_{n}}\left(\zeta_{\delta}^{\prime}\right)\left(\zeta_{n}+\frac{b \delta}{2}\right)+\mathcal{O}\left(\left|\zeta_{n}+\frac{b \delta}{2}\right|^{2}\right)
$$

Especially, when $\zeta_{n}=-b \delta$, we have

$$
\begin{equation*}
\left|f_{\delta}\left(\tilde{\zeta}_{\delta}^{\prime}\right)-f_{\delta}\left(\zeta_{\delta}^{\prime}\right)\right|=\left|\frac{\partial f_{\delta}}{\partial \zeta_{n}}\left(\zeta_{\delta}^{\prime}\right)\left(-\frac{b \delta}{2}\right)+\mathcal{O}\left(\delta^{2}\right)\right| \gtrsim 1 \tag{4.3}
\end{equation*}
$$

because $\left|\frac{\partial f_{\delta}}{\partial \zeta_{n}}\left(\zeta_{\delta}^{\prime}\right)\right| \geq \frac{1}{\delta}$ by (3.12).

Note that $g_{\delta}\left(\zeta_{\delta}\right)=f\left(\zeta_{\delta}^{\prime}\right)$ and $g_{\delta}\left(\tilde{\zeta}_{\delta}\right)=f\left(\tilde{\zeta}_{\delta}^{\prime}\right)$ because $0<2 b<a_{1} \leq c_{1}$. Therefore, it follows from (1.2), (4.1), (4.3), and the Mean Value Property that

$$
\begin{align*}
H_{\delta} & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[h_{\delta}\left(q_{1}^{\delta}(\theta)\right)-h_{\delta}\left(q_{2}^{\delta}(\theta)\right)\right] d \theta\right|=\left|h_{\delta}\left(\zeta_{\delta}\right)-h_{\delta}\left(\tilde{\zeta}_{\delta}\right)\right| \tag{4.4}\\
& \geq\left|f_{\delta}\left(\tilde{\zeta}_{\delta}^{\prime}\right)-f_{\delta}\left(\zeta_{\delta}^{\prime}\right)\right|-\left|u_{\delta}\left(\tilde{\zeta}_{\delta}\right)-u_{\delta}\left(\zeta_{\delta}\right)\right| \geq c_{0}-C_{0} \delta^{\kappa-\frac{1}{\eta}}
\end{align*}
$$

for some constants $0<c_{0}<1<C_{0}$. If we combine (4.2) and (4.4), we obtain that

$$
\begin{equation*}
1 \lesssim \delta^{\kappa-\frac{1}{\eta}} \tag{4.5}
\end{equation*}
$$

Now, if we assume $\kappa>\frac{1}{\eta}$ and take $\delta \rightarrow 0$, then (4.5) will be a contradiction. Therefore, $\kappa \leq \frac{1}{\eta}$.

References

[1] D. W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429-466. https://doi.org/10.1007/BF01215657
[2] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), no. 1, 105-119. https://doi.org/10.1007/ BF02571421
[3] \qquad , A lower bound on the Kobayashi metric near a point of finite type in \mathbb{C}^{n}, J. Geom. Anal. 2 (1992), no. 4, 317-325. https://doi.org/10.1007/BF02934584
[4] , Estimates of invariant metrics on pseudoconvex domains with comparable Levi form, J. Math. Kyoto Univ. 42 (2002), no. 2, 337-349. https://doi.org/10.1215/kjm/ 1250283875
[5] , Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form, J. Math. Anal. Appl. 283 (2003), no. 2, 386-397. https: //doi.org/10.1016/S0022-247X (03)00160-4
[6] , Estimates on the Bergman kernels on pseudoconvex domains with comparable Levi-forms, Complex Var. Elliptic Equ. 64 (2019), no. 10, 1703-1732. https://doi.org/ 10.1080/17476933.2018.1549037
[7] S. Cho and Y. H. You, On sharp Hölder estimates of the Cauchy-Riemann equation on pseudoconvex domains in \mathbb{C}^{n} with one degenerate eigenvalue, Abstr. Appl. Anal. 2015 (2015), Art. ID 731068, 6 pp. https://doi.org/10.1155/2015/731068
[8] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. https://doi.org/10.2307/2007015
[9] K. Diederich, B. Fischer, and J. E. Fornæss, Hölder estimates on convex domains of finite type, Math. Z. 232 (1999), no. 1, 43-61. https://doi.org/10.1007/PL00004758
[10] N. Kerzman, Hölder and L^{p} estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. https://doi.org/10.1002/ cpa. 3160240303
[11] S. G. Krantz, Characterizations of various domains of holomorphy via $\bar{\partial}$ estimates and applications to a problem of Kohn, Illinois J. Math. 23 (1979), no. 2, 267-285. http://projecteuclid.org/euclid.ijm/1256048239
[12] J. D. McNeal, On sharp Hölder estimates for the solutions of the $\bar{\partial}$-equations, in Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 277-285, Proc. Sympos. Pure Math., 52, Part 3, Amer. Math. Soc., Providence, RI, 1991.
[13] R. M. Range, On Hölder estimates for $\bar{\partial} u=f$ on weakly pseudoconvex domains, in Several Complex Variables (Cortona, 1976/1977), 247-267, Scuola Norm. Sup. Pisa, Pisa, 1978.
[14] Y. You, Necessary conditions for Hölder regularity gain of $\bar{\partial}$ equation in \mathbb{C}^{3}, arXiv. 1504.05432. Ph. D. thesis, Purdue University, West Lafayette, 2011.

Sanghyun Cho

Department of Mathematics
Sogang University
Seoul 04107, Korea
Email address: shcho@sogang.ac.kr

[^0]: Received June 30, 2020; Accepted January 14, 2021.
 2010 Mathematics Subject Classification. Primary 32W05, 32T25, 32F18.
 Key words and phrases. Hölder estimates of $\bar{\partial}$, finite type, comparable Levi-forms.

