DOI QR코드

DOI QR Code

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Pospisil, Stanislav (Institute of Theoretical and Applied Mechanics) ;
  • Machacek, Michael (Institute of Theoretical and Applied Mechanics)
  • Received : 2021.01.25
  • Accepted : 2021.04.15
  • Published : 2021.05.25

Abstract

Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

Keywords

Acknowledgement

Croatian Science Foundation HRZZ-IP-2016-06-2017 (WESLO) support is gratefully acknowledged. Support was partially provided by the RVO-68378297 grant of the Czech Academy of Sciences.

References

  1. Adaramola, M.S. and Krogstad, P.A. (2011), "Experimental investigation of wake effects on wind turbine performance", Renew. Energy. 36(8), 2078-2086. https://doi.org/10.1016/j.renene.2011.01.024.
  2. Ansari, M., Nobari, M.R.H. and Amani, E. (2019), "Determination of pitch angles and wind speeds ranges to improve wind turbine performance when using blade tip plates", Renew. Energy, 140, 957-969. https://doi.org/10.1016/j.renene.2019.03.119.
  3. Bartl, J., Muhle, F., Schottler, J., Saetran, L., Peinke, J., Adaramola, M. and Holling, M. (2018), "Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear", Wind Energ. Sci., 3, 329-343. https://doi.org/10.5194/wes-3-329-2018.
  4. Basta, E., Ghommem, M., Romdhane, L. and Abdelkefi, A. (2020), "Modeling and experimental comparative analysis on the performance of small-scale wind turbines", Wind Struct., 30(3), 261-273. http://dx.doi.org/10.12989/was.2020.30.3.261.
  5. Bastankhah, M. and Porte-Agel, F. (2016), "Experimental and theoretical study of wind turbine wakes in yawed conditions", J. Fluid Mech., 806, 506-541. https://doi.org/10.1017/jfm.2016.595.
  6. Bastankhah, M. and Porte-Agel, F. (2017), "A new miniature wind turbine for wind tunnel experiments. Part I: Design and performance", Energies, 10(7), 908, https://doi.org/10.3390/en10070908.
  7. Bastankhah, M. and Porte-Agel, F. (2019), "Wind farm power optimization via yaw angle control: A wind tunnel study", J. Renew. Sustain. Energy., 11(2), 023301. https://doi.org/10.1063/1.5077038.
  8. Bohme, G.S., Fadigas, E.A., Gimenes, A.L.V. and Tassinari, C.E.M. (2018), "Wake effect measurement in complex terrain - A case study in Brazilian wind farms", Energy, 161, 277-283. https://doi.org/10.1016/j.energy.2018.07.119.
  9. Bossanyi, E.A. (2003), "Individual blade pitch control for load reduction", Wind Energy, 6(2), 119-128. doi:10.1002/we.76.
  10. Botta, G., Cavaliere, M., Viani, S. and Pospisil, S. (1998), "Effects of hostile terrains on wind turbine performances and loads: The Acqua Spruzza experience", J. Wind Eng. Ind. Aerod., 74-76, 419-431. https://doi.org/10.1016/S0167-6105(98)00038-5.
  11. Chamorro, L.P. and Porte-Agel, F. (2010), "Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study", Bound. Lay. Meteorol.,. 136(3), 515-533. https://doi.org/10.1007/s10546-010-9512-1.
  12. Chen, Y.J. and Shiah, Y.C. (2016), "Experiments on the performance of small horizontal axis wind turbine with passive pitch control by disk pulley", Energies, 9(5), 353. doi:10.3390/en9050353.
  13. Cook, N.J. (1978), "Determination of the model scale factor in wind-tunnel simulations of the adiabatic atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 2(4), 311-321. doi:10.1016/0167-6105(78)90016-8.
  14. Coton, F.N. and Wang, T. (1999), "The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model", Proc. Inst. Mech. Eng. Part A J. Power Energy, 213(1), 33-43. https://doi.org/10.1243/0957650991537419.
  15. Counihan, J. (1969), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3(2), 197-214. https://doi.org/10.1016/0004-6981(69)90008-0.
  16. Crespo, A., Hernandez, J. and Frandsen, S. (2002), "Survey of modelling methods for wind turbine wakes and wind farms", Wind Energy, 2(1), 1-24. https://doi.org/10.1002/(sici)1099-1824(199901/03)2:1<1::aidwe16>3.3.co;2-z.
  17. Dai, L., Zhou, Q., Zhang, Y., Yao, S., Kang, S. and Wang, X. (2017), "Analysis of wind turbine blades aeroelastic performance under yaw conditions", J. Wind Eng. Ind. Aerod., 171, 273-287. https://doi.org/10.1016/j.jweia.2017.09.011.
  18. Dimitrov, N., Natarajan, A. and Kelly, M. (2015), "Model of wind shear conditional on turbulence and its impact on wind turbine loads", Wind Energy, 18(11), 1917-1931. https://doi.org/10.1002/we.1797.
  19. Dimitrov, N., Natarajan, A. and Mann, J. (2017), "Effects of normal and extreme turbulence spectral parameters on wind turbine loads", Renew. Energy., 101, 1180-1193. https://doi.org/10.1016/j.renene.2016.10.001.
  20. Dou, B., Guala, M., Lei, L. and Zeng, P. (2019), "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel", Energy, 166, 819-833. https://doi.org/10.1016/j.energy.2018.10.103.
  21. Dunne, F. and Pao, L.Y. (2016), "Optimal blade pitch control with realistic preview wind measurements", Wind Energy, 19(12), 2153-2169. https://doi.org/10.1002/we.1973.
  22. Eggers, A.J., Digumarthi, R. and Chaney, K. (2003), "Wind shear and turbulence effects on rotor fatigue and loads control", J. Sol. Energy Eng., 125(4), 402-409. https://doi.org/10.1115/1.1629752.
  23. ESDU (2001), Characteristics of atmospheric turbulence near the ground. Part II, Single point data for strong winds (neutral atmosphere). Eng Sci Data Unit.
  24. Fragoulis, A. (1997), "The complex terrain wind environment and its effects on the power output and loading of wind turbines", ASME Wind Energy Symposium, Reston, Virginia, 33-40. https://doi.org/10.2514/6.1997-934.
  25. Hansen, A.C., Butterfield, C.P. and Cui, X. (1990), "Yaw loads and motions of a horizontal axis wind turbine", J. Sol. Energy Eng., 112(4), 310. https://doi.org/10.1115/1.2929939.
  26. Holmes, J.D. (2015), Wind Loading of Structures, CRC Press, 2015.
  27. Holtslag, M.C., Bierbooms, W.A.A.M. and Van Bussel, G.J.W. (2016), "Wind turbine fatigue loads as a function of atmospheric conditions offshore", Wind Energy, 19(10), 1917-1932. doi:10.1002/we.1959.
  28. Howard, K.B., Chamorro, L.P. and Guala, M. (2013), "An experimental case study of complex topographic and atmospheric influences on wind turbine performance", The 51st AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 1-13. https://doi.org/10.2514/6.2013-611.
  29. Howard, K.B., Chamorro, L.P. and Guala, M. (2016), "A comparative analysis on the response of a wind-turbine model to atmospheric and terrain effects", Bound. Lay. Meteorol., 158(2), 229-255. https://doi.org/10.1007/s10546-015-0094-9.
  30. Hu, H., Yang, Z. and Sarkar, P. (2012), "Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind", Exp. Fluids, 52(5), 1277-1294. https://doi.org/10.1007/s00348-011-1253-5.
  31. Ke, S.T., Wang, X.H. and Ge, Y.J. (2019), "Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference", Wind Struct., 28(2), 71-87. http://dx.doi.org/10.12989/was.2019.28.2.071.
  32. Kozmar, H. (2011), "Characteristics of natural wind simulations in the TUM boundary layer wind tunnel", Theor. Appl. Climatol., 106(1-2), 95-104. https://doi.org/10.1007/s00704-011-0417-9.
  33. Kozmar, H. (2012), "Physical modeling of complex airflows developing above rural terrains", Environ. Fluid Mech., 12(3), 209-225. https://doi.org/10.1007/s10652-011-9224-1.
  34. Kozmar, H., Allori, D., Bartoli, G. and Borri, C. (2016), "Complex terrain effects on wake characteristics of a parked wind turbine", Eng. Struct., 110, 363-374. https://doi.org/10.1016/j.engstruct.2015.11.033.
  35. Kozmar, H., Allori, D., Bartoli, G. and Borri, C. (2018), "Wind characteristics in wind farms situated on a hilly terrain", J. Wind Eng. Ind. Aerod., 174, 404-410. doi:10.1016/j.jweia.2018.01.008.
  36. Kozmar, H., Allori, D., Bartoli, G. and Borri, C. (2019), "Wind characteristics in the wake of a non-rotating wind turbine close to a hill", Transactions of Famena, 43(3), 13-36. doi:10.21278/TOF.43302.
  37. Krogstad, P.A. and Adaramola, M.S. (2012), "Performance and near wake measurements of a model horizontal axis wind turbine", Wind Energy, 15(5), 743-756. https://doi.org/10.1002/we.502.
  38. Kuznetsov, S., Ribicic, M., Pospisil, S., Plut, M., Trush, A. and Kozmar, H. (2017), "Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices", Exp. Tech., 41(6), 643-661. https://doi.org/10.1007/s40799-017-0196-z.
  39. Kwon, D.K., Kareem, A. and Butler, K. (2012), "Gust-front loading effects on wind turbine tower systems", J. Wind Eng. Ind. Aerod., 104-106, 109-115. https://doi.org/10.1016/J.JWEIA.2012.03.030.
  40. Lalonde, E.R., Dai, K.S., Lu, W.S. and Bitsuamlak, G. (2019), "Wind turbine testing methods and application of hybrid testing: A review", Wind Struct., 29(3), 195-207. http://dx.doi.org/10.12989/was.2019.29.3.195.
  41. Larsen, G.C., Hansen M.H., Baumgart, A. and Carlen, I. (2002), "Modal Analysis of Wind Turbine Blades", Riso National Laboratory, Roskilde, Denmark.
  42. Machacek, M., Pospisil, S. and Kozmar, H. (2020), "Scaling of wind turbine aerodynamics: wind tunnel experiments", MATEC Web of Conferences, 313, 00053.10.1051/matecconf/202031300053.
  43. Massouh, F. and Dobrev, I. (2007), "Exploration of the vortex wake behind of wind turbine rotor", J. Phys: Conf Series 75. IOP Publishing, 012036. https://doi.org/10.1088/1742-6596/75/1/012036.
  44. Medici, D. and Alfredsson, P.H. (2006), "Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding", Wind Energy, 9(3), 219-236. https://doi.org/10.1002/we.156.
  45. Mucke, T., Kleinhans, D. and Peinke, J. (2011), "Atmospheric turbulence and its influence on the alternating loads on wind turbines", Wind Energy, 14(2), 301-316. https://doi.org/10.1002/we.422.
  46. Muljadi, E. and Butterfield, C.P. (2002), "Pitch-controlled variable-speed wind turbine generation", IEEE Trans. Ind. Appl., 37(1), 240-246. https://doi.org/10.1109/28.903156.
  47. Najafian Ashrafi, Z., Ghaderi, M. and Sedaghat, A. (2015), "Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control", Energy Convers. Manag., 93, 349-356. https://doi.org/10.1016/J.ENCONMAN.2015.01.048.
  48. Noda, M. and Flay, R.G.J. (1999), "A simulation model for wind turbine blade fatigue loads", J. Wind Eng. Ind. Aerod., 83(1-3), 527-540. https://doi.org/10.1016/S0167-6105(99)00099-9.
  49. Sang, L.Q., Murata, J., Morimoto, M., Kamada, Y., Maeda, T. and Li, Q. (2017), "Experimental investigation of load fluctuation on horizontal axis wind turbine for extreme wind direction change", J. Fluid Sci. Technol., 12(1), JFST0005-JFST0005. https://doi.org/10.1299/jfst.2017jfst0005.
  50. Sarkic Glumac, A., Hemida, H. and Hoffer, R. (2018), "Wind energy potential above a high-rise building influenced by neighboring buildings: An experimental investigation", J. Wind Eng. Ind. Aerod., 175, 32-42. https://doi.org/10.1016/J.JWEIA.2018.01.022.
  51. Sathe, A., Mann, J., Barlas, T., Bierbooms, W.A.A.M. and Van Bussel, G.J.W. (2013), "Influence of atmospheric stability on wind turbine loads", Wind Energy, 16(7), 1013-1032. https://doi.org/10.1002/we.1528.
  52. Sayed, M., Klein, L., Lutz, T. and Kramer, E. (2019), "The impact of the aerodynamic model fidelity on the aeroelastic response of multi-megawatt wind turbine", Renew. Energy, 140, 304-318. https://doi.org/10.1016/j.renene.2019.03.046.
  53. Siddiqui, M.S., Rasheed, A. and Kvamsdal, T. (2019), "Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel", Wind Struct., 29(6), 405-416. http://dx.doi.org/10.12989/was.2019.29.6.405.
  54. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, John Wiley & Sons, New York, New York, U.S.A.
  55. Sorensen, J.N. (2011), "Aerodynamic aspects of wind energy conversion", Annu Rev Fluid Mech., 43(1), 427-448. https://doi.org/10.1146/annurev-fluid-122109-160801.
  56. Tang, X., Yin, M., Shen, C., Xu, Y., Dong, Z.Y. and Zou, Y. (2019), "Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation", IEEE Trans Sustain Energy., 10(2), 822-832. https://doi.org/10.1109/TSTE.2018.2848923.
  57. Tian, W., Ozbay, A. and Hu, H. (2018), "An experimental investigation on the aeromechanics and wake interferences of wind turbines sited over complex terrain", J. Wind Eng. Ind. Aerod., 172, 379-394. https://doi.org/10.1016/j.jweia.2017.11.018.
  58. Tian, W., Ozbay, A. and Hu, H. (2019), "A wind tunnel study of wind loads on a model wind turbine in atmospheric boundary layer winds", J. Fluids Struct., 85, 17-26. https://doi.org/10.1016/j.jfluidstructs.2018.12.003.
  59. Van, T.L., Nguyen, B.P.N.T., Truong, T.H. and Trang, T.T. (2014), "Improved pitch angle control for variable-speed wind turbine system", Lecture Notes in Electric. Eng., 282, 103-112. https://doi.org/10.1007/978-3-642-41968-3_12.
  60. Whale, J., Anderson, C.G., Bareiss, R. and Wagner, S. (2000), "An experimental and numerical study of the vortex structure in the wake of a wind turbine", J. Wind Eng. Ind. Aerod., 84(1), 1-21. https://doi.org/10.1016/S0167-6105(98)00201-3.
  61. Yang, X., Howard, K.B., Guala, M. and Sotiropoulos, F. (2015), "Effects of a three-dimensional hill on the wake characteristics of a model wind turbine", Phys. Fluids, 27(2), 025103. doi:10.1063/1.4907685.
  62. Yang, Z., Ozbay, A., Sarkar, P. and Hu, H. (2012), "An experimental investigation on the wake interference of wind turbines sited over complex terrains", The 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Reston, Virigina, https://doi.org/10.2514/6.2012-1069.
  63. Zhang, W., Markfort, C.D. and Porte-Agel, F. (2012), "Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer", Exp. Fluids., 52(5), 1219-1235. https://doi.org/10.1007/s00348-011-1250-8.
  64. Zhu, Y. and Shuang, M. (2020), "Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine", Wind Struct., 31(3), 217-227. http://dx.doi.org/10.12989/was.2020.31.3.217.