과제정보
The financial support from the Regency Steel Asia Endowment Fund at Nanyang Technological University to the authors is gratefully acknowledged.
참고문헌
- Akselsen, O.M., Rorvik, G., Onsoien, M.I. and Grong, O. (1989), "Assessment and predictions of HAZ tensile properties of high-strength steels", Welding J., 68(9), 356.
- ASTM. (2009), Standard specification for high-yield-strength, quenched and tempered alloy steel plate, suitable for welding. ASTM International, West Conshohocken, United States.
- Atabaki, M.M, Yazdian, N. and Kovacevic, R. (2016), "High power laser welding of thick steel plates in a horizontal butt joint configuration", Opt. Laser Technol., 83, 1-12. https://doi.org/10.1016/j.optlastec.2016.03.016.
- AWS D1.1. (2008), Structural Welding Code-Steel. American National Standards Institute, Miami.
- Boumerzoug, Z., Derfouf, C. and Baudin, T. (2010), "Effect of welding on microstructure and mechanical properties of an industrial low carbon steel", Engineering, 2(7), 502-506. https://doi.org/10.4236/ENG.2010.27066.
- BSI. (2001), BS EN 10002-1: tensile testing of metallic materials: part1 method of test at ambient temperature, London: British Standards Institution.
- BSI. (2004), Hot rolled products of structural steels: part 6 technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition, BS EN 10025-6. British Standards Institution, London.
- BSI. (2005), 6507-1: Metallic Materials-Vickers Hardness Test-Part 1: Test Method, British Standards Institution, London.
- BSI. (2009), EN BS. 1011-1: Welding. Recommendations for welding of metallic materials. General guidance for arc welding.
- Chen, C., Chiew, S.P., Zhao, M.S., Lee, C.K. and Fung, T.C. (2019), "Welding effect on tensile strength of grade S690Q steel butt joint", J. Constr. Steel Res., 153, 153-168. https://doi.org/10.1016/j.jcsr.2018.10.009.
- Chen, C., Zhang, X.Z., Zhao, M.S., Lee, C.K., Fung, T.C. and Chiew, S.P. (2017), "Effects of Welding on the Tensile Performance of High Strength Steel T-stub Joints", Structures, 9, 70-78. https://doi.org/10.1016/j.istruc.2016.09.008.
- Chen, J., Young, B. and Uy, B. (2006), "Behavior of high strength structural steel at elevated temperatures", J. Struct. Eng., 132(12), 1948-1954. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1948).
- Chiew, S.P., Lee, C.K., Zhao, M.S., Jin, Y.F., Cai, Y.Q. and Chen, C. (2014), "Intensification of low density development - Functional Bridging Building, Keynote lecture", Proceeding of the 12th International Conference on Steel, Space and Composite Structures, Prague, Czech Republic, May.
- Chiew, S.P., Zhao, M.S. and Lee, C.K. (2014), "Mechanical properties of heat-treated high strength steel under fire/post-fire conditions", J. Constr. Steel Res., 98, 12-19. https://doi.org/10.1016/j.jcsr.2014.02.003.
- De Meester, B. (1997), "The weldability of modern structural TMCP steels", ISIJ Int., 37(6), 537-551. https://doi.org/10.2355/isijinternational.37.537.
- Eurocode 3. (2005), Design of steel structures-Part 1-8: Design of joints, Belgium: Brussels.
- Eurocode 3. (2007), Design of steel structures-Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S700, Belgium: Brussels.
- Hochhauser, D.I.F., and Rauch, M.R. (2012), "Influence of the soft zone on the strength of welded modern HSLA steels", Welding in the World, 56(5-6), 77-85. https://doi.org/10.1007/BF03321352.
- Kapustka, N., Conrardy, C., Babu, S., and Albright, C. (2008), "Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds". Welding Journal-New York-, 87(6), 135.
- Kim, K.N., Lee, S.H. and Jung, K.S. (2009), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Compos. Struct., 9(6), 557-568. https://doi.org/10.12989/scs.2009.9.6.557.
- Klein, M., Spindler, H., Luger, A., Rauch, R., Stiaszny, P. and Eigelsberger, M. (2005), "Thermomechanically Hot Rolled High and Ultra High Strength Steel Grades-Processing", Proper. Appl., 500, 543-550. https://doi.org/10.4028/www.scientific.net/MSF.500-501.543.
- Kong, F. and Radovan, K. (2013), "Measurement of surface residual stresses and testing mechanical properties of high-strength steel butt joints obtained by hybrid laser/gas metal arc welding", J. Strain Anal. Eng. Des., 48(7), 437-445. https://doi.org/10.1177/0309324713496085.
- Kurc-Lisiecka, A., Piwnik, J. and Lisiecki, A. (2017), "Laser welding of new grade of advanced high strength steel STRENX 1100 MC", Arch. Metallurgy Mater., 62(3), 1651-1657. https://doi.org/10.1515/amm-2017-0253.
- Lambert-Perlade, A., Gourgues, A.F. and Pineau, A. (2004), "Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel", Acta Materialia, 52(8), 2337-2348. https://doi.org/10.1016/j.actamat.2004.01.025.
- Lambert-Perlade, A., Sturel, T., Gourgues, A.F., Besson, J. and Pineau, A. (2014), "Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel", Metallurgical Mater. T. A, 35(13), 1039-1053. https://doi.org/10.1007/s11661-004-1007-6
- Leitner, M. (2017), "Influence of effective stress ratio on the fatigue strength of welded and HFMI-treated high-strength steel joints", Int. J. Fatigue, 102, 158-170. https://doi.org/10.1016/j.ijfatigue.2017.03.008.
- Li, D., Uy, B. and Wang, J. (2019), "Behaviour and design of high-strength steel beam-to-column joints", Steel Compos. Struct., 31(3), 303-317. https://doi.org/10.12989/scs.2019.31.3.303.
- Loureiro, A.J.R. (2002), "Effect of heat input on plastic deformation of undermatched welds", J. Mater. Process. Technol., 128(1), 240-249. https://doi.org/10.1016/S0924-0136(02)00457-0.
- Ming, L., Su, M. and Guo, Y. (2017), "Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel", Steel Compos. Struct., 24(4), 441-453. https://doi.org/10.12989/scs.2017.24.4.441.
- Movahed, P., Kolahgar, S., Marashi, S.P.H., Pouranvari, M. and Parvin, N. (2009), "The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets", Mater. Sci. Eng.: A, 518(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.05.046.
- Nykanen, T., Bjork, T. and Laitinen, R. (2013), "Fatigue strength prediction of ultra high strength steel butt-welded joints", Fatigue Fract. Eng. Mater. Struct., 36(6), 469-482. https://doi.org/10.1111/ffe.12015.
- Peng, K., Yang, C., Fan, C. and Lin, S. (2018), "Thermal processes, microstructure, and mechanical properties near weld toe in double-sided double gas tungsten arc backing welding joint of 10CrNi3MoV steel", Int. J. Adv. Manufact. Technol., 96(1), 677-684. https://doi.org/10.1007/s00170-018-1625-6.
- Pirinen, M., Martikainen, Y., Layus, P.D., Karkhin, V.A. and Yu, S. (2016), "Effect of heat input on the mechanical properties of welded joints in high-strength steels", Welding Int., 30(2), 129-132. https://doi.org/10.1080/09507116.2015.1036531.
- Qiang, X., Bijlaard, F.S.K. and Kolstein, H. (2012b), "Post-fire mechanical properties of high strength structural steels S460 and S690", Eng. Struct., 35, 1-10. https://doi.org/10.1016/j.engstruct.2011.11.005.
- Qiang, X., Bijlaard, F.S.K. and Kolstein, H. (2012a), "Dependence of mechanical properties of high strength steel S690 on elevated temperatures", Constr. Build. Mater., 30, 73-79. https://doi.org/10.1016/j.conbuildmat.2011.12.018.
- Ran, M.M., Sun, F.F., Li, G.Q. Kanvinde, A. Wang, Y.B. and Xiao, R.Y. (2019), "Experimental study on the behavior of mismatched butt welded joints of high strength steel", J. Constr. Steel Res., 153, 196-208. https://doi.org/10.1016/j.jcsr.2018.10.003.
- Rodrigues, D.M., Menezes, L.F., Loureiro, A. and Fernandes, J.V. (2004), "Numerical study of the plastic behaviour in tension of welds in high strength steels", Int. J. Plasticity, 20(1), 1-18. https://doi.org/10.1016/S0749-6419(02)00112-2.
- Shi, Y. and Han, Z. (2008), "Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel", J. Mater. Process. Technol., 207(1-3), 30-39. https://doi.org/10.1016/j.jmatprotec.2007.12.049.
- Taheri-Behrooz, F., Aliha, M.R., Maroofi, M. and Hadizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel Compos. Struct., 28(6), 759-766. https://doi.org/10.12989/scs.2018.28.6.759.
- Wojnowski, D., Oh, Y.K. and Indacochea, J.E. (2000), "Metallurgical assessment of the softened HAZ region during multipass welding", J. Manufact. Sci. Eng., 122(2), 310-315. https://doi.org/10.1115/1.538920.
- Zhang, S.Q., Zhao, H.Y., Shu, F.Y., He, W.X. and Wang, G.D. (2017), "Microstructure and Corrosion Behavior of Simulated Welding HAZ of Q315NS Steel in Sulfuric Acid Solution", Metals, 7(6), 194. https://doi.org/10.3390/met7060194.
- Zhang, X., Mi, G., Li, S., Wang, C. and Zhang, Y. (2018), "Study of microstructural inhomogeneity and its effects on mechanical properties of multi-layer laser welded joint", Int. J. Adv. Manufact. Technol., 94(5-8), 2163-2174. https://doi.org/10.1007/s00170-017-0944-3.
- Zhao, M.S., Lee, C.K., Fung, T.C. and Chiew, S.P. (2017), "Impact of welding on the strength of high performance steel T-stub joints", J. Constr. Steel Res., 131, 110-121. https://doi.org/10.1016/j.jcsr.2016.12.023.