DOI QR코드

DOI QR Code

Discrimination and bifurcation analysis of tumor immune interaction in fractional form

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Rashid, Yahya (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ishaque, Waqas (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Din, Qamar (Department of Mathematics University of Poonch Rawalakot 12350) ;
  • Alwabli, Afaf S. (Department of Biological Sciences, Rabigh-Faculty of Science & Arts, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.07.22
  • 심사 : 2021.01.01
  • 발행 : 2021.04.25

초록

A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/1/16794.

참고문헌

  1. Abbas, S., Banerjee, M. and Momani, S. (2011), "Dynamical analysis of fractional-order modified logistic model", Comput. Mathe. Applicat., 62(3), 1098-1104. https://doi.org/10.1016/j.camwa.2011.03.072
  2. Agarwal, R. and Karahanna, E. (2000), "Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage", MIS Quarterly, 665-694. https://doi.org/10.2307/3250951
  3. Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A. (2007), "Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models", J. Mathe. Anal. Applicat., 325(1), 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087
  4. Ahmed, E., Hashish, A. and Rihan, F.A. (2012), "On fractional order cancer model", J. Fract. Calculus Appl. Anal., 3(2), 1-6. https://doi.org/10.1155/2013/816803
  5. Arafa, A.A.M., Rida, S.Z. and Khalil, M. (2013), "The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model", Appl. Mathe. Modell., 37(4), 2189-2196. https://doi.org/10.1016/j.apm.2012.05.002
  6. Arenas, A.J., Gonzalez-Parra, G. and Chen-Charpentier, B.M. (2016), "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order", Mathe. Comput. Simul., 121, 48-63. https://doi.org/10.1155/2017/8273430
  7. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  8. Banerjee, S. (2008), "Immunotherapy with interleukin-2: a study based on mathematical modeling", Int. J. Appl. Mathe. Comput. Sci., 18(3), 389-398. https://doi.org/10.2478/v10006-008-0035-6
  9. Banerjee, S. and Sarkar, R.R. (2008), "Delay-induced model for tumor-immune interaction and control of malignant tumor growth", Bio Syst., 91(1), 268-288. https://doi.org/:10.1016/j.biosystems.2007.10.002
  10. Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012), "Global cancer transitions according to the Human Development Index (2008-2030): a population-based study", lancet oncol., 13(8), 790-801. https://doi.org/10.1016/S1470-2045(12)70211-5
  11. Chabner, B.A. and Roberts, T.G. (2005), "Chemotherapy and the war on cancer", Nature Rev. Cancer, 5(1), 65-72. https://doi.org/10.1038/nrc1529
  12. Chen, W.-C. (2008), "Nonlinear dynamics and chaos in a fractional-order financial system", Chaos Solitons Fractals, 36(5), 1305-1314. https://doi.org/10.1016/j.chaos.2006.07.051
  13. Curti, B.D., Ochoa, A.C., Urba, W.J., Alvord, W.G., Kopp, W.C., Powers, G., Hawk, C., Creekmore, S.P., Gause, B.L., Janik, J.E. and Holmlund, J.T. (1996), "Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients", Journal of Immunotherapy with Emphasis on Tumor Immunology: Official Journal of the Society for Biological Therapy, 19(4), 296-308. https://doi.org/ 10.1097/00002371-199607000-00005.
  14. De Boer, R.J., Hogeweg, P., Dullens, H.F., De Weger, R.A. and Den Otter, W. (1985), "Macrophage T lymphocyte interactions in the anti-tumor immune response a mathematical model", J. Immunol., 134(4), 2748-2758. https://doi.org/10.1016/S0022-5193(05)80142-0
  15. De Pillis, L.G. and Radunskaya, A. (2003), "The dynamics of an optimally controlled tumor model: A case study", Mathe. Comput. Modell., 37(11), 1221-1244. https://doi.org/10.1016/S0895-7177(03)00133
  16. De Pillis, L.G., Gu, W. and Radunskaya, A.E. (2006), "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", J. Theor. Biol., 238(4), 841-862. https://doi:10.1016/j.jtbi.2005.06.037
  17. DeLisi, C. and Rescigno, A. (1977), "Immune surveillance and neoplasia-1 a minimal mathematical model", Bull. Mathe. Biol., 39(2), 201-221. https://doi.org/10.1016/S0092-8240(77)80008-6
  18. Din, Q. (2017), "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025
  19. Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x
  20. Duan, W.L. (2020), "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises", Chaos Solitons Fractals, 141, 110303. https://doi.org/10.1016/j.chaos.2020.110303
  21. Duan, W.L., Fang, H. and Zeng, C. (2019), "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises", Chaos Solitons Fractals, 127, 96-102. https://doi.org/10.1016/j.chaos.2019.06.030
  22. Edelstein-Keshet, L. (2005), "Mathematical models in biology", SIAM. https://doi.org/10.1137/1.9780898719147
  23. Eladdadi, A., Pillis, L.D. and Kim, P. (2018), "Modelling tumour-immune dynamics, disease progression and treatment", Taylor and Francis. https://doi.org/10.1080/23737867.2018.1483003
  24. Elsadany, A. and Matouk, A. (2015), "Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization", J. Appl. Mathe. Comput., 49(1-2), 269-283. http://dx.doi.org/10.1007%2Fs12190-014-0838-6 https://doi.org/10.1007%2Fs12190-014-0838-6
  25. El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A. and Matouk, A.E. (2016), "Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization", Int. J. Bifurcat. Chaos, 26(13), 1650222. https://doi.org/10.1142/S0218127416502229
  26. Galach, M. (2003), "Dynamics of the Tumor-Immune System Competition the Effect of Time Delay", Int. J. Appl. Mathe. Comput. Sci, 13, 395-406. https://doi.org/10.1155/DDNS/2006/58463
  27. Gonzalez-Parra, G., Arenas, A.J. and Chen-Charpentier, B.M (2014), "A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1)", Mathe. Methods Appl. Sci., 37(15), 2218-2226. https://doi.org/10.1002/mma.2968
  28. Gorenflo, R. and Mainardi, F. (1997), "Fractional calculus", Fractals and fractional calculus in continuum mechanics, Springer, 223-276. https://doi.org/10.1007/978-3-7091-2664-6
  29. Hilfer, R. (2000), "Applications of fractional calculus in physics", World scientific, Singapore. https://doi.org/10.1142/3779
  30. Huang, C., Cao, J. and Xiao, M. (2016), "Hybrid control on bifurcation for a delayed fractional gene regulatory network." Chaos Solitons Fractals, 87, 19-29. https://doi.org/10.1007/s11431-018-9376-2
  31. Itik, M., Salamci, M.U. and Banks, S.P. (2009), "Optimal control of drug therapy in cancer treatment", Nonlinear Anal.: Theory, Methods Applicat., 71(12), e1473-e1486. https://doi.org/10.3906/elk-1001-411
  32. Jun, D., Guang-jun, Z., Yong, X., Hong, Y. and Jue, W. (2014), "Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model", Cognitiveneurodynamics, 8(2), 167-175. https://dx.doi.org/10.1007%2Fs11571-013-9273-x https://doi.org/10.1007%2Fs11571-013-9273-x
  33. Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
  34. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221.
  35. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  36. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct, Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  37. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  38. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  39. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., Int. J., 34(2), 279-288. https://doi.org/10.12989/sss.2017.20.5.595
  40. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
  41. Kirschner, D. and Panetta, J.C. (1998), "Modeling immunotherapy of the tumor-immune interaction", J. Mathe. Biol., 37(3), 235-252. https://doi.org/10.1007/s002850050127
  42. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, A.S. (1994), "Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis", Bull. Mathe. Biol., 56(2), 295-321. https://doi.org/10.1016/S0092-8240(05)80260-5
  43. Laskin, N. (2002), "Fractional schrodinger equation", Phys. Rev. E, 66(5), 056108. https://doi.org/10.1103/PhysRevE.66.056108
  44. Liao, W., Lin, J.X. and Leonard, W.J. (2011), "IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation", Current Opinion Immunol., 23(5), 598-604. https//doi.org/10.1016/j.coi.2011.08.003
  45. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  46. Marincola, F.M., White, D.E., Wise, A.P. and Rosenberg, S.A. (1995), "Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer", J. Clinical Oncology, 13(5), 1110-1122. https://doi.org/10.1385/1-59745-011
  47. Matouk, A. and Elsadany, A. (2016), "Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model", Nonlinear Dyn., 85(3), 1597-1612. https//doi.org/10.1007/s11071-016-2781-6
  48. Matouk, A.E., Elsadany, A.A., Ahmed, E. and Agiza, H.N. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. http://dx.doi.org/http://dx.doi.org/10.10 16/j.cnsns.2015.03.004 https://doi.org/10.1016/j.cnsns.2015.03.004
  49. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
  50. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010), "Fractional-order systems and controls: fundamentals and applications", Springer Science and Business Media. https//doi.org/:10.1007/978-1-84996-335-0
  51. Oldham, K.B. (2010), "Fractional differential equations in electrochemistry", Adv. Eng. Software, 41(1), 9-12. https//doi.org/10.1016/j.advengsoft.2008.12.012
  52. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Computat. Mathe., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
  53. Podlubny, I. (1999), "Fractional differential equations", Vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, CA, USA. https//doi.org/10.12691/ajma-1-1-3
  54. Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B. and Yafia, R. (2016), "Dynamics of tumor-immune system with fractional-order", J. Tumor Res., 2(1), 109-115.
  55. Rowlands, M. and Gunnell, D. (2009), "HArrIS r, VATTEN LJ, HOLLy JM, MAr-TIN rM. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis", Int. J. Cancer, 124, 2416-2429. https://doi.org/10.1002/ijc.24202
  56. Rutter, E.M. and Kuang, Y. (2017), "Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer", Discrete Continuous Dyn. Syst.-B, 22(3), 1001. http://dx.doi.org/10.3934/dcdsb.2017050
  57. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  58. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  59. Tarasov, V.E. (2008), "Fractional vector calculus and fractional Maxwell's equations", Annals Phys., 323(11), 2756-2778. https://doi.org/10.1016/j.aop.2008.04.005
  60. Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. and Galhano, A.F. (2010), "Some applications of fractional calculus in engineering", Mathe. Problems Eng. https://doi.org/10.1155/2010/639801
  61. Thamareerat, N., Luadsong, A. and Aschariyaphotha, N. (2017), "Stability results of a fractional model for unsteady-state fluid flow problem", Adv. Differ. Equ., 74. https://doi.org/10.1186/s13662-017-1116-3
  62. Thariat, J., Hannoun-Levi, J.M., Myint, A.S., Vuong, T. and Gerard, J.P. (2013), "Past, present, and future of radiotherapy for the benefit of patients", Nature Rev. Clinical Oncol., 10(1), 52. https://doi.org/10.1038/nrclinonc.2012.203
  63. Ucar, E., Ozdemir, N. and Altun, E. (2019), "Fractional order model of immune cells influenced by cancer cells", Mathe. Modell. Natural Phenomena, 14(3), 308. https://doi.org/10.1051/mmnp/2019002
  64. Villasana, M. and Radunskaya, A. (2003), "A delay differential equation model for tumor growth", J. Mathe. Biol., 47(3), 270-294. https://doi.org/10.1007/s00285-003-0211-0
  65. Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E, 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201
  66. Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003
  67. Wyld, L., Audisio, R.A. and Poston, G.J. (2015), "The evolution of cancer surgery and future perspectives", Nature Rev Clinical Oncol., 12(2), 115. https://doi.org/10.1038/nrclinonc.2014.191
  68. Yuste, S.B., Acedo, L. and Lindenberg, K. (2004), "Subdiffusionlimited A+ B→ C reaction-subdiffusion process", Phys. Rev. E, 69(3), 36-126. https://doi.org/10.1103/PhysRevE.69.036126
  69. Zhang, J., Nan, J., Du, W., Chu, Y. and Luo, H. (2016), "Dynamic analysis for a fractional-order autonomous chaotic system", Discrete Dyn. Nature Soc., 2016. https://doi.org/10.1155/2016/8712496.