DOI QR코드

DOI QR Code

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University)
  • Received : 2020.07.18
  • Accepted : 2021.01.02
  • Published : 2021.04.25

Abstract

In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Keywords

Acknowledgement

This research has is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08052562)

References

  1. Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6
  2. Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A Comprehensive Physics-Based Current-Voltage SPICE Compact Model for 2-D-Material-Based Top-Contact Bottom-Gated Schottky-Barrier FETs", IEEE Transact. Electron Dev., 67, 5188-5195. https://doi.org/10.1109/TED.2020.3020900
  3. Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA.
  4. Cumings, J. and Zettl, A. (2000), "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes", Science, 289(5479), 602-604. https://doi.org/10.1126/science.289.5479.602
  5. Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2
  6. Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9
  7. Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288, 494-497. https://doi.org/10.1126/science.288.5465.494
  8. Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science + Business Media, NY, USA. https://doi.org/10.1007/978-1-4757-2166-9
  9. Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480
  10. Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science + Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8
  11. Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanoscale Adv., 2, 4410-4416. https://doi.org/10.1039/d0na00602e
  12. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
  13. Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure", Nanoscale Res. Lett., 15, 180. https://doi.org/10.1186/s11671-020-03409-7
  14. Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philosoph. Mag., 21(172), 863-867. http://dx.doi.org/10.1080/14786437008238472
  15. Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6, 27549. https://doi.org/10.1038/srep27549
  16. Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G
  17. Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336, 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011
  18. Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky Contacts in van der Waals Metal-Semiconductor-Metal Structures Based on TwoDimensional Janus Materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524
  19. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061
  20. Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Carbon Nanostruct., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974
  21. Meng, J. and Li, Z. (2020), "Schottky-Contacted Nanowire Sensors", Adv. Mater., 2000130. https://doi.org/10.1002/adma.202000130
  22. Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, USA. https://doi.org/10.1007/978-1-4614-0548-1
  23. Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge Transfer during the Aluminum-Water Reaction Studied with Schottky Nanodiode Sensors", ACS Omega, 4, 20838-20843. https://doi.org/10.1021/acsomega.9b03397
  24. Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bulletin, 45, 26-31. https://doi.org/10.1557/mrs.2019.295
  25. Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D
  26. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  27. Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89, 033505. https://doi.org/10.1063/1.2227758
  28. Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67, 161404(R). https://doi.org/10.1103/PhysRevB.67.161404
  29. Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69, 115418. https://doi.org/10.1103/PhysRevB.69.115418
  30. Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B: Condensed Matter, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z
  31. Sergeyev, D. (2020a), "Single Electron Transistor Based on Endohedral Metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano- Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017
  32. Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022
  33. Sergeyev, D. (2020c), "Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180
  34. Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60, 1938-1945. https://doi.org/10.1007/s11182-018-1306-9
  35. Sergeyev, D. and Zhanturina, N. (2019), "Simulation of Electrical Characteristics of Switching Nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with Memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714
  36. Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96, 195309. https://doi.org/10.1103/PhysRevB.96.195309
  37. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G. and Lee, M.E. (2020), "QuantumATK: an integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007
  38. Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20, 064216. https://doi.org/10.1088/0953-8984/20/6/064216
  39. Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8, 7350-7357. https://doi.org/10.1039/d0tc01405b
  40. Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
  41. Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J. and Hisama, K. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570
  42. Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88, 173107. http://dx.doi.org/10.1063/1.2198481.