DOI QR코드

DOI QR Code

Extract of Curcuma zedoaria R. prevents atherosclerosis in apolipoprotein E-deficient mice

  • Kim, Ki Mo (Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Lee, Joo Young (Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Jeon, Byeong Hwa (Department of Physiology, School of Medicine, Chungnam National University) ;
  • Quan, Khong Trong (Department of Pharmacognosy, College of Pharmacy, Chungnam National University) ;
  • Na, MinKyun (Department of Pharmacognosy, College of Pharmacy, Chungnam National University) ;
  • Nam, Kung-Woo (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Chae, Sungwook (Herbal Medicine Research Division, Korea Institute of Oriental Medicine)
  • Received : 2020.05.04
  • Accepted : 2020.12.20
  • Published : 2021.06.01

Abstract

BACKGROUND/OBJECTIVES: Curcuma zedoaria R. (Zingiberaceae) has been used to treat headache, fever, and hypertension-related symptoms in Asian countries, including Korea, China, and Japan. We investigated whether dietary intake of a C. zedoaria extract (CzE) affected atherosclerosis in vivo. MATERIALS/METHODS: Apolipoprotein E-deficient (ApoE-/-) mice (n = 32) were fed a normal diet (ND), a high-cholesterol diet (HCD), an HCD containing CzE (100 mg/kg/day), or an HCD containing simvastatin (10 mg/kg/day) for 12 weeks. The anti-atherosclerotic effects were evaluated by observing changes in fatty streak lesions, immunohistochemical analysis, ex vivo fluorescence imaging, lipid profiles, and western blot analysis. RESULTS: The CzE-fed group showed a 41.6% reduction of atherosclerosis. Furthermore, CzE significantly reduced the levels of serum triglyceride, high-density lipoprotein, the chemokine (C-X3-C-motif ) ligand 1, the adhesion molecules vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin; down-regulation of tumor necrosis factor-α, interleukin-6, high mobility group box-1, and cathepsin levels in the aortic sinuses and aortas of ApoE-/- mice were also observed. CONCLUSIONS: The results suggest that the inclusion of a water extract of C. zedoaria in a HCD is closely correlated with reducing the risk of vascular inflammatory diseases in an ApoE mouse model.

Keywords

Acknowledgement

This work was supported by a grant (KSN2012330) from the Korea Institute of Oriental Medicine (KIOM) and by the Soonchunhyang University Research Fund.

References

  1. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-74. https://doi.org/10.1038/nature01323
  2. Rai V, Agrawal DK. The role of damage- and pathogen-associated molecular patterns in inflammationmediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol 2017;95:1245-53. https://doi.org/10.1139/cjpp-2016-0664
  3. Barlic J, Zhang Y, Murphy PM. Atherogenic lipids induce adhesion of human coronary artery smooth muscle cells to macrophages by up-regulating chemokine CX3CL1 on smooth muscle cells in a TNFα-NFκB-dependent manner. J Biol Chem 2007;282:19167-76. https://doi.org/10.1074/jbc.M701642200
  4. Su Q, Sun Y, Ye Z, Yang H, Kong B, Li L. Pinocembrin protects endothelial cells from oxidized LDL-induced injury. Cytokine 2018;111:475-80. https://doi.org/10.1016/j.cyto.2018.05.033
  5. Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004;24:1359-66. https://doi.org/10.1161/01.ATV.0000134530.27208.41
  6. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998;102:576-83. https://doi.org/10.1172/JCI181
  7. Lee TK, Lee D, Lee SR, Ko YJ, Kang KS, Chung SJ, Kim KH. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg Chem 2019;87:117-22. https://doi.org/10.1016/j.bioorg.2019.03.015
  8. Hamdi OA, Feroz SR, Shilpi JA, Anouar H, Mukarram AK, Mohamad SB, Tayyab S, Awang K. Spectrofluorometric and molecular docking studies on the binding of curcumenol and curcumenone to human serum albumin. Int J Mol Sci 2015;16:5180-93. https://doi.org/10.3390/ijms16035180
  9. Akter J, Hossain MA, Takara K, Islam MZ, Hou DX. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): isolation of active compounds. Comp Biochem Physiol C Toxicol Pharmacol 2019;215:9-17. https://doi.org/10.1016/j.cbpc.2018.09.002
  10. Ji S, Fattahi A, Raffel N, Hoffmann I, Beckmann MW, Dittrich R, Schrauder M. Antioxidant effect of aqueous extract of four plants with therapeutic potential on gynecological diseases; Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria. Eur J Med Res 2017;22:50. https://doi.org/10.1186/s40001-017-0293-6
  11. Yao C, Jiang J, Tu Y, Ye S, Du H, Zhang Y. β-elemene reverses the drug resistance of A549/DDP lung cancer cells by activating intracellular redox system, decreasing mitochondrial membrane potential and P-glycoprotein expression, and inducing apoptosis. Thorac Cancer 2014;5:304-12. https://doi.org/10.1111/1759-7714.12093
  12. Jung EB, Trinh TA, Lee TK, Yamabe N, Kang KS, Song JH, Choi S, Lee S, Jang TS, Kim KH, Hwang GS. Curcuzedoalide contributes to the cytotoxicity of Curcuma zedoaria rhizomes against human gastric cancer AGS cells through induction of apoptosis. J Ethnopharmacol 2018;213:48-55. https://doi.org/10.1016/j.jep.2017.10.025
  13. Chen CC, Chen Y, Hsi YT, Chang CS, Huang LF, Ho CT, Way TD, Kao JY. Chemical constituents and anticancer activity of Curcuma zedoaria roscoe essential oil against non-small cell lung carcinoma cells in vitro and in vivo. J Agric Food Chem 2013;61:11418-27. https://doi.org/10.1021/jf4026184
  14. Lee SK, Hong CH, Huh SK, Kim SS, Oh OJ, Min HY, Park KK, Chung WY, Hwang JK. Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) activity in mouse macrophage cells. J Environ Pathol Toxicol Oncol 2002;21:141-8.
  15. Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M. Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 2006;20:680-5. https://doi.org/10.1080/14786410500462900
  16. Gupta SK, Banerjee AB, Achari B. Isolation of Ethyl p-methoxycinnamate, the major antifungal principle of Curcumba zedoaria. Lloydia 1976;39:218-22.
  17. Kimura Y, Sumiyoshi M, Tamaki T. Effects of the extracts and an active compound curcumenone isolated from Curcuma zedoaria rhizomes on alcohol-induced drunkenness in mice. Fitoterapia 2013;84:163-9. https://doi.org/10.1016/j.fitote.2012.11.007
  18. Navarro DF, de Souza MM, Neto RA, Golin V, Niero R, Yunes RA, Delle Monache F, Cechinel Filho V. Phytochemical analysis and analgesic properties of Curcuma zedoaria grown in Brazil. Phytomedicine 2002;9:427-32. https://doi.org/10.1078/09447110260571670
  19. Le TB, Beaufay C, Nghiem DT, Pham TA, Mingeot-Leclercq MP, Quetin-Leclercq J. Evaluation of the anti-trypanosomal activity of Vietnamese essential oils, with emphasis on Curcuma longa L. and its components. Molecules 2019;24:1158. https://doi.org/10.3390/molecules24061158
  20. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468-71. https://doi.org/10.1126/science.1411543
  21. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 1987;68:231-40. https://doi.org/10.1016/0021-9150(87)90202-4
  22. Im AR, Yang WK, Park YC, Kim SH, Chae S. Hepatoprotective effects of insect extracts in an animal model of nonalcoholic fatty liver disease. Nutrients 2018;10:735. https://doi.org/10.3390/nu10060735
  23. Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation 2007;116:1052-61. https://doi.org/10.1161/CIRCULATIONAHA.106.647164
  24. Lee HJ, Im AR, Kim SM, Kang HS, Lee JD, Chae S. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement Altern Med 2018;18:39. https://doi.org/10.1186/s12906-017-2058-8
  25. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007;16:136-43. https://doi.org/10.1016/j.carpath.2006.11.006
  26. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-9. https://doi.org/10.1038/362801a0
  27. Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2014;141:347-57. https://doi.org/10.1016/j.pharmthera.2013.11.001
  28. Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J Atheroscler Thromb 2018;25:111-23. https://doi.org/10.5551/jat.RV17016