DOI QR코드

DOI QR Code

Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT

  • Damani, Bakhti (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Fekrar, Abdelkader (Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bedia, E.A. Adda (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • 투고 : 2019.11.05
  • 심사 : 2021.04.06
  • 발행 : 2021.05.25

초록

In this work, quasi three-dimensional (quasi-3D) shear deformation theory is presented for bending and dynamic analysis of functionally graded (FG) plates. The effect of varying material properties and volume fraction of the constituent on dynamic and bending behavior of the FG plate is discussed. The benefit of this model over other contributions is that a number of variables is diminished. The developed model considers nonlinear displacements through the thickness and ensures the free boundary conditions at top and bottom faces of the plate without using any shear correction factors. The basic equations that account for the effects of transverse and normal shear stresses are derived from Hamilton's principle. The analytical solutions are determined via the Navier procedure. The accuracy of the proposed formulation is proved by comparisons with the different 2D, 3D and quasi-3D solutions found in the literature.

키워드

참고문헌

  1. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  4. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  5. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123, 296. https://doi.org/10.1007/s00339-017-0854-0.
  6. Alijani, F. and Amabili, M. (2014), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct., 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006.
  7. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
  8. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/SEM.2020.75.6.713.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  11. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2019a), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
  12. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
  13. Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  14. Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6.
  15. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  16. Civalek, O . and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
  17. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  18. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098.
  19. Fadoun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025.
  20. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  21. Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B, 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.
  22. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  23. Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293.
  24. Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/s0021894411050178.
  25. Hadji, L. (2020), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupl. Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  26. Hadji, L. and Avcar, M. (2021a), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/JACM.2020.35328.2628.
  27. Hadji, L. and Avcar, M. (2021b), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
  28. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
  29. Hadji, L. and Safa, A., (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481.
  30. Hamed, M.A., Abo-bakr R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  31. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  32. Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
  33. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  34. Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
  35. Jin, Z.H. and Batra, R.C. (1996), "Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock", J. Therm. Stress., 19, 317-339. https://doi.org/10.1080/01495739608946178.
  36. Jin, Z.H. and Paulino, G.H. (2001), "Transient thermal stress analysis of an edge crack in a functionally graded material", Int. J. Fract., 107, 73-98. https://doi.org/10.1023/A:1026583903046.
  37. Kar, V.R. and Panda, S.K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661.
  38. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  39. Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/scs.2019.32.6.821.
  40. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  41. Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B, 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.
  42. Mantari, J.L. and Soares, C.G. (2014), "Static response of advanced composite plates by a new non-polynomial higher-order shear deformation theory", Int. J. Mech. Sci., 78, 60-71. https://doi.org/10.1016/j.ijmecsci.2013.10.020.
  43. Mantari, J.L. and Soares, C.G. (2015), "A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates", Acta Mechanica, 226(3), 625-642. https://doi.org/10.1007/s00707-014-1192-3.
  44. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
  45. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87, 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002.
  46. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/SEM.2016.59.3.431.
  47. Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309.
  48. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054.
  49. Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2016b), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.
  50. Mohammadimehr, M., Okhravi, S. and Akhavan Alavi, S. (2016a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022.
  51. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  52. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. abd Soares, C.M.M. (2012b), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
  53. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B, 43, 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.
  54. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trend. Civil Eng. Its Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  55. Pitakthapanaphong, S. and Busso, E.P. (2002), "Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients", J. Mech. Phys. Solid., 50, 695-716. https://doi.org/10.1016/S0022-5096(01)00105-3.
  56. Rabia, B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://dx.doi.org/10.12989/amr.2020.9.4.265.
  57. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  58. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. DOI: https://doi.org/10.12989/scs.2019.33.6.805.
  59. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  60. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.02727.
  61. Sheikholeslami, S.A. and Saidi, A.R. (2013), "Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory", Compos. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016.
  62. Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5.
  63. Srinivas, S., JogaRao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J. Sound. Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.
  64. Thai, H.T. and Choi, D.H. (2014), "Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates", Compos. Part B, 56, 705-716. https://doi.org/10.1016/j.compositesb.2013.09.008.
  65. Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
  66. Vaghefi, R., Baradaran, G.H. and Koohkan, H. (2010), "Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrove-Galerkin (MLPG) method", Eng. Anal. Bound. Elem., 34, 564-573. https://doi.org/10.1016/j.enganabound.2010.01.005.
  67. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound. Vib., 272, 703-730.https://doi.org/10.1016/S0022-460X(03)00412-7.
  68. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654.
  69. Youcef, A., Bourada, M., Draiche, K., Boucham, B., Bourada, F. and Addou, F.Y. (2020), "Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories", Coupl. Syst. Mech., 9(3), 237-264. https://doi.org/10.12989/csm.2020.9.3.237.
  70. Yung, Y.Y. and Munz, D. (1996), "Stress analysis in a two materials joint with a functionally graded material", Functional graded materials", Proceedings of the 4th International Symposium on Functionally Graded Materials, Tsukuba, Japan. https://doi.org/10.1016/B978-044482548-3/50008-1.
  71. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  72. Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77(4), 197-214. https://doi.org/10.1007/s00419-006-0084-y.
  73. Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37, 9041-9051. https://doi.org/10.1016/j.apm.2013.04.022.
  74. Zhang, H., Jiang, J.K. and Zhang, Z.C. (2014), "Three-dimensional elasticity solutions for bending of generally supported thick functionally graded plates", Appl. Math. Mech., 35(11), 1467-1478. https://doi.org/10.1007/s10483-014-1871-7.
  75. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound. Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
  76. Zhu, P. and Liew, K.M. (2011), "Free vibration analysis of moderately thick functionally graded plates by local Krigingmeshless method", Compos. Struct., 93(11), 2925-2944. https://doi.org/10.1016/j.compstruct.2011.05.011.