Acknowledgement
The research described in this paper was financially supported by the Central Tehran branch of Islamic Azad University.
References
- Abrate, S. (1998), Impact on Composite Structures, Cambridge University Press, New York, NY, USA.
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low. Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
- Asadi, E., Wang, W. and Qatu, M.S. (2012), "Statics and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94, 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011
- Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
- Chang, T. and Gao, H. (2003), "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", J. Mech. Phys. Solids, 51, 1059-1074. https://doi.org/10.1016/S0022-5096(03)00006-1
- Chavan, G.S. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537
- Ebrahimi, F. and Habibi, S. (2017), "low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
- Emdadi, M., Mohemmadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2019), "Mechanical behavior of laminated functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations in thermal environments", J. Compos. Mater., 53(9), 1159-1179. https://doi.org/10.1177/002F0021998318796170
- Hajmohammad, M.H., Zarei, M.S, Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
- Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987
- Hussain, M., Naeem, M.N., Tounesi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-432. https://doi.org/10.1989/anr. 2019.7.6.431
- Jedari Salami, S. (2016a), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E, 76, 187-197. https://doi.org/10.1016/j.physe.2015.10.015
- Jedari Salami, S. (2016b), "Dynamic extended high order sandwich panel theory for transient response of sandwich beams with carbon nanotube reinforced face sheets", Aerosp. Sci. Technol., 56, 56-69. https://doi.org/10.1016/j.ast.2016.06.026
- Jedari Salami, S. (2017), "Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on extended high order sandwich panel theory", Aerosp. Sci. Technol., 66, 165-176. https://doi.org/10.1016/j.ast.2017.03.007
- Jedari Salami, S. (2018), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788
- Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC microplate subjected to magnetic field via FSDT", Adv. Nano Res., Int. J., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405
- Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280
- Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational Behavior of Non-Uniform Piezoelectric Sandwich Beams Made of CNT-Reinforced Polymer Nanocomposite by Considering the Agglomeration Effect of CNTs", Polym. Compos., 38(S1), 553-562. https://doi.org/10.1002/pc.23933
- Kamarian, S., Bodaghi, M., Barbaz Isfahani, R., Shakeri M. and Yas, M.H. (2019), "Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations", Mech. Based Des. Struct. Machines, 49(2), 217-2322. https://doi.org/10.1080/15397734.2019.1674664
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
- Karimov, K.S., Nabi, J.-U., Ali, R., Fatima, N., Khan, A., Rehman, M.M. and Bashir, M.M. (2020), "Resistive and impedimetric properties of elastic composite based on graphene and CNT under uniaxial compressive displacement", Adv. Compos. Mater., 29(6), 559-568. https://doi.org/10.1080/09243046.2020.1731104
- Khater, H.M. and Abd El Gawwad, H.A. (2015), "Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT ", Adv. Nano Res., Int. J., 1(2), 225-242. https://doi.org/10.12989/anr. 2015.3.4.225
- Kumar, D. and Sirvastava, A. (2016), "Elastic properties of cnt- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011
- Navneeth, V., Sankar, S.P., Prasanth, R.S. and Samsingh, R.V. (2020), "Investigation on the mechanical and stealth behavior of CNT based polymer composites", Mater. Today: Proceedings, 39, 1682-1687. https://doi.org/10.1016/j.matpr.2020.06.152
- Shen, H. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43, 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H. and Xiang, Y. (2014), "Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Eng. Struct., 80, 163-172. https://doi.org/10.1016/j.engstruct.2014.08.038
- Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer-based carbon nanotube composites", Polymer, 47, 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
- Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Composites: B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Zhang, L., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111(1), 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
- Zhang, L., Lei, Z.X. and Liew, K.M. (2015a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120(1), 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009
- Zhang, L., Lei, Z.X. and Liew, K.M. (2015b), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122(1), 172-183. https://doi.org/10.1016/j.compstruct.2014.11.070
- Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51(2), 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004