DOI QR코드

DOI QR Code

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari (Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Boroujerdy, Mostafa Sabzikar (Department of Engineering, Firoozkooh Branch, Islamic Azad University) ;
  • Bazzaz, Ehsan (Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University)
  • Received : 2020.01.24
  • Accepted : 2021.01.03
  • Published : 2021.04.25

Abstract

This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Central Tehran branch of Islamic Azad University.

References

  1. Abrate, S. (1998), Impact on Composite Structures, Cambridge University Press, New York, NY, USA.
  2. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
  3. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low. Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
  4. Asadi, E., Wang, W. and Qatu, M.S. (2012), "Statics and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94, 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011
  5. Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
  6. Chang, T. and Gao, H. (2003), "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", J. Mech. Phys. Solids, 51, 1059-1074. https://doi.org/10.1016/S0022-5096(03)00006-1
  7. Chavan, G.S. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537
  8. Ebrahimi, F. and Habibi, S. (2017), "low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
  9. Emdadi, M., Mohemmadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
  10. Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2019), "Mechanical behavior of laminated functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations in thermal environments", J. Compos. Mater., 53(9), 1159-1179. https://doi.org/10.1177/002F0021998318796170
  11. Hajmohammad, M.H., Zarei, M.S, Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
  12. Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987
  13. Hussain, M., Naeem, M.N., Tounesi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-432. https://doi.org/10.1989/anr. 2019.7.6.431
  14. Jedari Salami, S. (2016a), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E, 76, 187-197. https://doi.org/10.1016/j.physe.2015.10.015
  15. Jedari Salami, S. (2016b), "Dynamic extended high order sandwich panel theory for transient response of sandwich beams with carbon nanotube reinforced face sheets", Aerosp. Sci. Technol., 56, 56-69. https://doi.org/10.1016/j.ast.2016.06.026
  16. Jedari Salami, S. (2017), "Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on extended high order sandwich panel theory", Aerosp. Sci. Technol., 66, 165-176. https://doi.org/10.1016/j.ast.2017.03.007
  17. Jedari Salami, S. (2018), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788
  18. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC microplate subjected to magnetic field via FSDT", Adv. Nano Res., Int. J., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405
  19. Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280
  20. Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational Behavior of Non-Uniform Piezoelectric Sandwich Beams Made of CNT-Reinforced Polymer Nanocomposite by Considering the Agglomeration Effect of CNTs", Polym. Compos., 38(S1), 553-562. https://doi.org/10.1002/pc.23933
  21. Kamarian, S., Bodaghi, M., Barbaz Isfahani, R., Shakeri M. and Yas, M.H. (2019), "Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations", Mech. Based Des. Struct. Machines, 49(2), 217-2322. https://doi.org/10.1080/15397734.2019.1674664
  22. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
  23. Karimov, K.S., Nabi, J.-U., Ali, R., Fatima, N., Khan, A., Rehman, M.M. and Bashir, M.M. (2020), "Resistive and impedimetric properties of elastic composite based on graphene and CNT under uniaxial compressive displacement", Adv. Compos. Mater., 29(6), 559-568. https://doi.org/10.1080/09243046.2020.1731104
  24. Khater, H.M. and Abd El Gawwad, H.A. (2015), "Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT ", Adv. Nano Res., Int. J., 1(2), 225-242. https://doi.org/10.12989/anr. 2015.3.4.225
  25. Kumar, D. and Sirvastava, A. (2016), "Elastic properties of cnt- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
  26. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  27. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  28. Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011
  29. Navneeth, V., Sankar, S.P., Prasanth, R.S. and Samsingh, R.V. (2020), "Investigation on the mechanical and stealth behavior of CNT based polymer composites", Mater. Today: Proceedings, 39, 1682-1687. https://doi.org/10.1016/j.matpr.2020.06.152
  30. Shen, H. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  31. Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43, 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
  32. Shen, H. and Xiang, Y. (2014), "Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Eng. Struct., 80, 163-172. https://doi.org/10.1016/j.engstruct.2014.08.038
  33. Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer-based carbon nanotube composites", Polymer, 47, 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
  34. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
  35. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Composites: B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  36. Zhang, L., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111(1), 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
  37. Zhang, L., Lei, Z.X. and Liew, K.M. (2015a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120(1), 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009
  38. Zhang, L., Lei, Z.X. and Liew, K.M. (2015b), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122(1), 172-183. https://doi.org/10.1016/j.compstruct.2014.11.070
  39. Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51(2), 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004