DOI QR코드

DOI QR Code

Elastic stiffness of stud connection in composite structures

  • Qin, Xi (School of Civil Engineering, Qingdao University of Technology) ;
  • Yang, Guotao (School of Civil Engineering, Qingdao University of Technology)
  • Received : 2020.06.09
  • Accepted : 2021.04.12
  • Published : 2021.05.25

Abstract

In composite structures, shear connectors are crucial components to resist the relative slip between the steel and concrete, and thereby to achieve the composite actions. In the service stage, composite structures are usually in elastic state, so the elastic stiffness of the shear connection is a quite important parameter in the structural analysis of composite structures. Nevertheless, the existing studies mainly focus on the load-slip relationship rather than the tangent stiffness at the initial elastic stage. Furthermore, when composite beams subjected to torque or local load, shear connections are affected by both tensile force and shear force. However, the stiffness of shear connections under combined effects appears not to have been discussed hitherto. This paper investigates the initial elastic stiffness of stud connections under combined effects of biaxial forces. The initial expression and the relevant parameters are obtained by establishing a simplified analytical model of the stud connection. Afterwards, parametric finite element analysis is performed to investigate the effects of the relevant factors, including the stud length, stud diameter, elastic modulus of concrete, elastic modulus of steel and volume ratio of reinforcement. The feasibility of the proposed modelling has been proved by comparing with sufficient experimental tests. Based on the analytical analysis and the extensive numerical simulations, design equations for predicting the initial elastic stiffness of stud connections are proposed. The comparison between the equations and the data of finite element models demonstrates that the equations are accurate enough to serve for engineering communities.

Keywords

Acknowledgement

Work for this paper is supported by Natural Science Foundation of China (NSFC) through Grant Nos. 5180081528 and 51978351. Herewith acknowledge with best thanks.

References

  1. AASHTO (2004), AASHTO-LRFD bridge design specifications, American Association of State Highway and Transportation Officials, Washington, D.C., USA.
  2. Abada, G., Bernard, F., Lim, S. and Tehami, M. (2019), "Simulations of push-out tests: influence of several parameters and structural arrangements", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 172(5), 340-357. https://doi.org/10.1680/jstbu.17.00109.
  3. An, L. and Cederwall, K. (1996), "Push-out tests on studs in high strength and normal strength concrete", J. Constr. Steel Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H.
  4. Ban, H., Bradford, M.A., Uy, B. and Liu, X. (2016), "Available rotation capacity of composite beams with high-strength materials under sagging moment", J. Constr. Steel Res., 118, 156-168. https://doi.org/10.1016/j.jcsr.2015.11.008.
  5. Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite-Element Analysis of Steel-Concrete Composite Plate Girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE) 0733-9445(2002)128:9(1158).
  6. Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., 27(3), 355-370. https://doi.org/10.12989/scs. 2018.27.3.355.
  7. Chen, J., Zhao, Y.X., Wu, L. and Jin, W.L. (2016), "Experimental investigation and design of corroded stud shear connectors", Adv. Struct. Eng., 19(2), 218-226. https://doi.org/10.1177/1369433215624327.
  8. Dalen, K.V. (1983), "The strength of stud shear connectors at low temperatures", Can. J. Civil Eng., 10(3), 429-436. https://doi.org/10.1139/l83-070.
  9. Dall'Asta, A. and Zona, A. (2002), "Non-linear analysis of composite beams by a displacement approach", Comput. Struct., 80(27-30), 2217-2228. https://doi.org/10.1016/S0045- 7949(02)00268-7.
  10. Dassault Systemes Simulia Corporation (2014), Abaqus Documentation, Version 6.14.
  11. Dietrich, M.Z., Calenzani, A.F.G. and Fakury, R.H. (2019), "Analysis of rotational stiffness of steel-concrete composite beams for lateral-torsional buckling", Eng. Struct., 198. https://doi.org/10.1016/j.engstruct. 2019.109554.
  12. Ding, F.X., Yin, G.A., Wang, H.B., Wang, L.P. and Guo, Q. (2017), "Behavior of headed shear stud connectors subjected to cyclic loading", Steel Compos. Struct., 25(6), 705-716. https://doi.org/10.12989/scs.2017.25. 6.705.
  13. Eurocode 4, E.N. (2004), Design of composite steel and concrete structures. Part 1.1: General rules and rules for buildings, BSI Publications, London.
  14. Gattesco, N. and Giuriani, E. (1996), "Experimental study on stud shear connectors subjected to cyclic loading", J. Constr. Steel Res., 38(1), 1-21. https://doi.org/10.1016/0143-974X(96)00007-7.
  15. Gattesco, N., Giuriani, E. and Gubana, A. (1997), "Low-cycle fatigue test on stud shear connectors", J. Struct. Eng., 123(2), 145-150. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(145).
  16. GB50017 (2017), Standard for design of steel structures. GB50017-2017, China Building Industry Press, Beijing.
  17. Ghafari, E. and Rezaeepazhand, J. (2017), "Isogeometric analysis of composite beams with arbitrary cross- section using dimensional reduction method", Comput. Method. Appl. M., 318, 594-618. https://doi.org/10.1016/j.cma.2017.02.008.
  18. Giussani, F. and Mola, F. (2006), "Service-stage analysis of curved composite steel-concrete bridge beams", J. Struct. Eng., 132(12), 1928-1939. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1928).
  19. Hozjan, T., Saje, M., Srpcic, S. and Planinc, I. (2011), "Fire analysis of steel-concrete composite beam with interlayer slip", Comput. Struct., 89(1-2), 189-200. https://doi.org/10.1016/j.compstruc.2010.09.004.
  20. Johnson, R.P. (2000), "Resistance of stud shear connectors to fatigue", J. Constr.l Steel Res., 56(2), 101-116. https://doi.org/10.1016/S0143-974X(99)00082-6.
  21. Johnson, R.P. (2008), Composite Structures of Steel and Concrete: Beams, Slabs, Columns, and Frames for Buildings, Third Edition, Blackwell Publishing, Norwich, N.Y.
  22. Johnson, R.P. and Yuan, H. (1998a), "Existing rules and new tests for stud shear connectors in troughs of profiled sheeting", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 128(3), 244-251. https://doi.org/10.1680/istbu.1998.30458.
  23. Johnson, R.P. and Yuan, H. (1998b), "Models and design rules for stud shear connectors in troughs of profiled sheeting", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 128(3), 252-263. https://doi.org/10.1680/istbu.1998.30459.
  24. Kim, K.S., Han, O., Gombosuren, M. and Kim, S.H. (2019), "Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis", Steel Compos. Struct., 31(1), 53-67. https://doi.org/10.12989/scs.2019.31.1.053.
  25. Klingner, R. and Mendonca, J. (1982), "Tensile capacity of short anchor bolts and welded studs: a literature review", J. Proceedings, 79, 270-279. https://doi.org/10.14359/10897.
  26. Lee, P.G., Chang-Su, S. and Sung-Pil, C. (2005), "Static and fatigue behavior of large stud shear connectors for steel- concrete composite bridges", J. Constr. Steel Res., 61(9), 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007.
  27. Lee, W., Kwak, H.G. and Hwang, J.Y. (2019a), "Bond-slip effect in steel-concrete composite flexural members: Part 1-Simplified numerical model", Steel Compos. Struct., 32(4), 537-548. https://doi.org/10.12989/scs. 2019.32.4.537.
  28. Lee, W., Kwak, H.G. and Kim, J.R. (2019b), "Bond-slip effect in steel-concrete composite flexural members: Part 2-Improvement of shear stud spacing in SCP", Steel Compos. Struct., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549.
  29. Lin, J.P. (2020), "Static Analysis of Composite Beams Using Collocation Technique by Considering Linear and Nonlinear Partial Interactions", J. Eng. Mech., 146(2). https://doi.org/10.1061/(asce)em. 1943-7889.0001704.
  30. Lin, Z.F., Liu, Y.Q. and He, J. (2014), "Behavior of stud connectors under combined shear and tension loads", Eng. Struct., 81, 362-376. https://doi.org/10.1016/j.engstruct.2014.10.016.
  31. Lin, Z.F., Liu, Y.Q. and He, J. (2015), "Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone", Steel Compos. Struct., 18(6), 1369-1389. https://doi.org/10.12989/scs.2015.18.6.1369.
  32. Liu, J.P., Zhou, B.X., Yu, J. and Wang, Y.H. (2017), "Experimental study on mechanical behavior of shear studs in assembled monolithic steel-concrete composite beam", J. Build. Struct., 38(1), 337-341. https://doi.org/10.1016/j.engstruct.2018.11.034.
  33. Liu, X., Bradford, M.A. and Erkmen, R.E. (2013), "Non-linear inelastic analysis of steel-concrete composite beams curved inplan", Eng. Struct., 57(11), 484-492. https://doi.org/10.1016/j.engstruct.2013.09.009.
  34. Liu, X.P., Bradford, M.A., Chen, Q.J. and Ban, H.Y. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108(C), 54-65. https://doi.org/10.1016/j.finel.2015.09.004.
  35. Mirza, O. and Uy, B. (2009a), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", J. Constr. Steel Res., 65(3), 662-674. https://doi.org/10.1016/j.jcsr. 2008.03.008.
  36. Mirza, O. and Uy, B. (2009b), "Effects of steel fiber reinforcement on the behaviour of headed stud shear connectors for composite steel-concrete beams", Adv. Steel Constr., 5(1), 72-95.
  37. Mirza, O. and Uy, B. (2010a), "Effects of Strain Regimes on the Behaviour of Headed Stud Shear Connectors for Composite Steel-Concrete Beams", Adv. Steel Constr., 6(1), 635-661.
  38. Mirza, O. and Uy, B. (2010b), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019.
  39. Newmark, N.M. (1951), "Test and analysis of composite beams with incomplete interaction", Proceedings of society for experimental stress analysis, 9(1), 75-92.
  40. Oehlers, D. and Coughlan, C. (1986), "The shear stiffness of stud shear connections in composite beams", J. Constr. Steel Res., 6(4), 273-284. https://doi.org/10.1016/0143-974X(86)90008-8.
  41. Oehlers, D.J. and Bradford, M.A. (2013), Composite Steel and Concrete Structures: Fundamental Behaviour, Elsevier.
  42. Oehlers, D.J. and Foley, L. (1985), "The Fatigue-Strength of Stud Shear Connections in Composite Beams", Proceedings of the Institution of Civil Engineers Part 2-Research and Theory, 79(Jun), 349-364. https://doi.org/10.1680/iicep.1985.995.
  43. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal weight concrete", AISC Eng. J., 8(2), 55-64.
  44. Qi, J.N., Wang, J.Q., Li, M. and Chen, L.L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079.
  45. Salari, M.R., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998), "Nonlinear analysis of composite beams with deformable shear connectors", J. Struct. Eng., 124(10), 1148-1158. https://doi.org/10.1061/ (ASCE)0733-9445(1998)124:10(1148).
  46. Seracino, R., Oehlers, D.J. and Yeo, M.F. (2002), "Partial-interaction fatigue assessment of stud shear connectors in composite bridge beams", Struct. Eng. Mech., 13(4), 455-464. https://doi.org/10.12989/sem.2002.13.4.455.
  47. Shamass, R. and Cashell, K.A. (2019), "Analysis of stainless steel-concrete composite beams", J. Constr. Steel Res., 152, 132-142. https://doi.org/10.1016/j.jcsr.2018.05.032.
  48. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011.
  49. Slutter, R.G. and Driscoll, G.C. (1965), "Flexural strength of steel-concrete composite beams", J. Struct.Div. - ASCE, 91, 71-99. https://doi.org/10.1061/JSDEAG.0001257
  50. Spremic, M., Markovic, Z., Veljkovic, M. and Budjevac, D. (2013), "Push-out Experiments of Headed Shear Studs in Group Arrangements", Adv. Steel Constr., 9(2), 139-160.
  51. Spremic, M., Pavlovic, M., Markovic, Z., Veljkovic, M. and Budjevac, D. (2018), "FE validation of the equivalent diameter calculation model for grouped headed studs", Steel Compos. Struct., 26(3), 375-386. https://doi.org/10.12989/scs.2018.26.3.375.
  52. Su, Q., Yang, G. and Bradford, M.A. (2016a), "Bearing Capacity of Stud-Bolt Hybrid Shear Connection in Segmental Composite Bridge Girders", J. Bridge Eng., 21(4), 06015008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000873.
  53. Su, Q.T., Yang, G.T. and Bradford, M.A. (2014), "Static behaviour of multi-row stud shear connectors in high- strength concrete", Steel and Composite Structures, 17(6), 967-980. DOI: 10.12989/scs.2014.17.6.967.
  54. Su, Q.T., Yang, G.T. and Bradford, M.A. (2016b), "Bearing Capacity of Perfobond Rib Shear Connectors in Composite Girder Bridges", Journal of Bridge Engineering, 21(4). DOI: 10.1061/(ASCE)BE.1943-5592. 0000865.
  55. Su, Q.T., Yang, G.T. and Wu, C. (2012b), "Experimental Investigation on Inelastic Behavior of Composite Box Girder under Negative Moment", Int. J. Steel Struct., 12(1), 71-84. https://doi.org/10.1007/s13296-012-1007-0.
  56. Su, Q.T., Yang, G.T., Qin, F. and Wu, C. (2012a), "Investigation on the horizontal mechanical behavior of steel-concrete composite cable-pylon anchorage", J. Constr. Steel Res., 72(4), 267-275. https://doi.org/10.1016/j.jcsr.2012.01.004.
  57. Tan, E.L. and Uy, B. (2011), "Nonlinear analysis of composite beams subjected to combined flexure and torsion", Journal of Constructional Steel Research, 67(5), 790-799. DOI: 10.1016/j.jcsr.2010.12.015.
  58. Viest, I.M. (1956), "Investigation of Stud Shear Connectors for Composite Concrete and Steel T-Beams", J. Am. Concrete Inst., 27(8), 875-891. https://doi.org/10.14359/11655.
  59. Wang, Q. (2013), "Experimental Research on Mechanical Behavior and Design Method of Stud Connectors", Ph.D. dissertation, Department of Bridge Engineering, College of Civil Engineering, Tongji University, Shanghai, China.
  60. Wang, Y.C. (1998), "Deflection of steel-concrete composite beams with partial shear interaction", J. Struct. Eng., 124(10), 1159-1165. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1159).
  61. Xu, C., Sugiura, K., Wu, C. and Su, Q.T. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Constr. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029
  62. Xue, D.Y., Liu, Y.Q., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectorsfor steel-concrete composite bridge", Journal of Constructional Steel Research, 74, 1-7. DOI: 10.1016/j.jcsr.2011.09.017.
  63. Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.1016/j.jcsr. 2011.10.029.
  64. Yang, G.T. and Su, Q.T. (2011), "Discussion on composite (steel-concrete) highway bridge fatigue assessment", J. Constr. Steel Res., 67(9), 1411-1412. https://doi.org/10.1016/j.jcsr.2011.03.002.
  65. Yang, G.T. and Su, Q.T. (2012), "Discussion on numerical simulation of concrete encased steel composite columns", J. Constr. Steel Res., 71, 263-264. https://doi.org/10.1016/j.jcsr.2011.09.013.