DOI QR코드

DOI QR Code

Direct imposition of the wall boundary condition for simulating free surface flows in SPH

  • Park, Hyung-Jun (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology) ;
  • Seo, Hyun-Duk (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology) ;
  • Lee, Phill-Seung (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology)
  • 투고 : 2021.03.13
  • 심사 : 2021.04.15
  • 발행 : 2021.05.25

초록

In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is directly imposed by adding boundary truncation terms to the mass and momentum conservation equations. Thus, boundary particles are not used in boundary modeling. Doing so, the wall boundary condition is accurately imposed, boundary modeling is simplified, and computation is made efficient without losing stability in SPH. Performance of the proposed method is demonstrated through several numerical examples: dam break, dam break with a wedge, sloshing, inclined bed, cross-lever rotation, pulsating tank and sloshing with a flexible baffle. These results are compared with available experimental results, analytical solutions, and results obtained using the boundary particle method.

키워드

과제정보

This work was supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20204030200050). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B3005328).

참고문헌

  1. Adami, S., Hu, X.Y. and Adams, N.A. (2012), "A generalized wall boundary condition for smoothed particle hydrodynamics", J. Comput. Phys., 231(21), 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005.
  2. Ancey, C., Iverson, R.M., Rentschler, M. and Denlinger, R.P. (2008), "An exact solution for ideal dam-break floods on steep slopes", Water Resour. Res., 44(1), 1. https://doi.org/10.1029/2007WR006353.
  3. Bakti, F.P., Kim, M.H., Kim, K.S. and Park, J.C. (2016), "Comparative study of standard WC-SPH and MPS solvers for free surface academic problems", Int. J. Offshore Polar Eng., 26(03), 235-243. https://doi.org/10.17736/ijope.2016.pf17.
  4. Bathe, K.J. (2014), Finite Element Procedures, 2nd Edition, Watertown, MA.
  5. Bierbrauer, F., Bollada, P.C. and Phillips, T.N. (2009), "A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics", Comput. Meth. Appl. Mech. Eng., 198(41-44), 3400-3410. https://doi.org/10.1016/j.cma.2009.06.014.
  6. Buchner, B. (2002), "Green water on ship-type offshore structures", Ph.D. Dissertation, Delft University of Technology, Delft.
  7. Chen, Z., Zong, Z., Li, H.T. and Li, J. (2013), "An investigation into the pressure on solid walls in 2D sloshing using SPH method", Ocean Eng., 59, 129-141.https://doi.org/10.1016/j.cma.2009.06.014.
  8. Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T. and Shu, C. (2015), "An SPH model for multiphase flows with complex interfaces and large density differences", J. Comput. Phys., 283, 169-188. https://doi.org/10.1016/j.jcp.2014.11.037.
  9. Colagrossi, A. (2005), "A meshless Lagrangian method for free-surface and interface flows with fragmentation", Ph.D. Dissertation, Universita di Roma, Roma.
  10. Colagrossi, A. and Landrini, M. (2003), "Numerical simulation of interfacial flows by smoothed particle hydrodynamics", J. Comput. Phys., 191(2), 448-475. https://doi.org/10.1016/S0021-9991(03)00324-3.
  11. Daly, E., Grimaldi, S. and Bui, H.H. (2016), "Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes", Adv. Water Resour., 97, 156-167. https://doi.org/10.1016/j.advwatres.2016.09.008.
  12. Eslamian, A. and Khayat, M. (2017), "Numerical studies to propose a ghost particle removed SPH (GR-SPH) method", Appl. Math. Model., 42, 71-99. https://doi.org/10.1016/j.apm.2016.09.026.
  13. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A. and Timokha, A.N. (2000), "Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth", J. Fluid Mech., 407, 201-234. https://doi.org/10.1017/S0022112099007569
  14. Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D. and Kassiotis, C. (2013), "Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method", Int. J. Numer. Meth. Fluid., 71(4), 446-472. https://doi.org/10.1002/fld.3666.
  15. Francomano, E. and Paliaga, M. (2020), "A normalized iterative smoothed particle hydrodynamics method", Math. Comput. Simul., 176, 171-180. https://doi.org/10.1016/j.matcom.2019.10.004.
  16. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Month. Not. Royal Astronom. Soc., 181(3), 375-389. https://doi.org/10.1093/mnras/181.3.375.
  17. Idelsohn, S.R., Marti, J., Souto-Iglesias, A. and Onate, E. (2008), "Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM", Comput. Mech., 43(1), 125-132. https://doi.org/10.1007/s00466-008-0245-7.
  18. Kim, S. and Lee, K.H. (2018), "Hydrodynamic analysis of floating structures with baffled ARTs", Struct. Eng. Mech., 68(1), 1-15. http://doi.org/10.12989/sem.2018.68.1.001.
  19. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002.
  20. Kulasegaram, S., Bonet, J., Lewis, R.W. and Profit, M. (2004), "A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications", Comput. Mech., 33(4), 316-325. https://doi.org/10.1007/s00466-003-0534-0.
  21. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R. and Allahdadi, F.A. (1993), "High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response", J. Comput. Phys., 109(1), 67-75. https://doi.org/10.1006/jcph.1993.1199.
  22. Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore.
  23. Liu, M., Shao, J. and Chang, J. (2012), "On the treatment of solid boundary in smoothed particle hydrodynamics", Sci. China Technol. Sci., 55(1), 244-254. https://doi.org/10.1007/s11431-011-4663-y.
  24. Liu, M.B. and Liu, G.R. (2010), "Smoothed particle hydrodynamics (SPH): an overview and recent developments", Arch. Comput. Meth. Eng., 17(1), 25-76. https://doi.org/10.1007/s11831-010-9040-7.
  25. Liu, M.B., Liu, G.R., Lam, K.Y. and Zong, Z. (2003), "Smoothed particle hydrodynamics for numerical simulation of underwater explosion", Comput. Mech., 30(2), 106-118. https://doi.org/10.1007/s00466-002-0371-6.
  26. Liu, M.B., Liu, G.R., Zong, Z. and Lam, K.Y. (2003), "Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology", Comput. Fluid., 32(3), 305-322. https://doi.org/10.1016/S0045-7930(01)00105-0.
  27. Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82, 1013-1024. https://doi.org/10.1086/112164
  28. Mirauda, D., Albano, R., Sole, A. and Adamowski, J. (2020) "Smoothed particle hydrodynamics modeling with advanced boundary conditions for two-dimensional dam-break floods", Water, 12(4), 1142. https://doi.org/10.3390/w12041142.
  29. Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034.
  30. Monaghan, J.J. (2005), "Smoothed particle hydrodynamics", Report. Prog. Phys., 68(8), 1703. https://doi.org/10.1146/annurev.aa.30.090192.002551.
  31. Monaghan, J.J. and Gingold, R.A. (1983) "Shock simulation by the particle method SPH", J. Comput. Phys., 52(2), 374-389. https://doi.org/10.1016/0021-9991(83)90036-0.
  32. Monaghan, J.J. and Kajtar, J.B. (2009), "SPH particle boundary forces for arbitrary boundaries", Comput. Phys. Commun., 180(10), 1811-1820. https://doi.org/10.1016/j.cpc.2009.05.008.
  33. Monaghan, J.J. and Kos, A. (1999), "Solitary waves on a Cretan beach", J. Waterw. Port Coast. Ocean Eng., 125(3), 145-155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145).
  34. Monaghan, J.J. and Lattanzio, J.C. (1985) "A refined particle method for astrophysical problems", Astron. Astrophys., 149, 135-143.
  35. Morris, J.P. (1996), "A study of the stability properties of smooth particle hydrodynamics", Publ. Astron. Soc. Australia, 13, 97-102. https://doi.org/10.1017/S1323358000020610
  36. Morris, J.P. (1996), "Analysis of smoothed particle hydrodynamics with applications", Ph.D. Dissertation, Monash University, Melbourne.
  37. Ozbulut, M., Yildiz, M. and Goren, O. (2014), "A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows", Int. J. Mech. Sci., 79, 56-65. https://doi.org/10.1016/j.ijmecsci.2013.11.021.
  38. Paik, K.J. and Carrica, P.M. (2014), "Fluid-structure interaction for an elastic structure interacting with free surface in a rolling tank", Ocean Eng., 84, 201-212. https://doi.org/10.1016/j.oceaneng.2014.04.016.
  39. Seo, H.D., Park, H.J., Kim, J.I. and Lee, P.S. (2021)", The particle-attached element interpolation for density correction in smoothed particle hydrodynamics", Adv. Eng. Softw., 154, 102972. https://doi.org/10.1016/j.advengsoft.2021.102972.
  40. Shao, J.R., Li, H.Q., Liu, G.R. and Liu, M.B. (2012), "An improved SPH method for modeling liquid sloshing dynamics", Comput. Struct., 100, 18-26. https://doi.org/10.1016/j.compstruc.2012.02.005.
  41. Shao, S. (2012), "Incompressible smoothed particle hydrodynamics simulation of multifluid flows", Int. J. Numer. Meth. Fluid., 69(11), 1715-1735. https://doi.org/10.1002/fld.2660.
  42. Shobeyri, G. (2017), "Improving efficiency of SPH method for simulation of free surface flows using a new treatment of Neumann boundary conditions", J. Brazil. Soc. Mech. Sci. Eng., 39(12), 5001-5014. https://doi.org/10.1007/s40430-017-0861-2.
  43. Shobeyri, G. (2018), "A simplified SPH method for simulation of free surface flows", Iran. J. Sci. Technol. Tran. Civil Eng., 42(3), 245-258. https://doi.org/10.1007/s40996-018-0103-6.
  44. Sigalotti, L.D.G., Rendon, O., Klapp, J., Vargas, C.A. and Cruz, F. (2019), "A new insight into the consistency of the SPH interpolation formula", Appl. Math. Comput., 356, 50-73. https://doi.org/10.1016/j.amc.2019.03.018.
  45. Staroszczyk, R. (2010), "Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method", Arch. Hydro-Eng. Environ. Mech., 57(1), 61-79.
  46. Takahashi, T., Dobashi, Y., Nishita, T. and Lin, M.C. (2018), "An efficient hybrid incompressible SPH solver with interface handling for boundary conditions", Comput. Graph. Forum, 37(1), 313-324. https://doi.org/10.1111/cgf.13292.
  47. Takeda, H., Miyama, S.M. and Sekiya, M. (1994), "Numerical simulation of viscous flow by smoothed particle hydrodynamics", Prog. Theo. Phys., 92(5), 939-960. https://doi.org/10.1143/ptp/92.5.939.
  48. Tang, Y., Chen, S. and Jiang, Q. (2020), "A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows", Appl. Math. Model., 82, 607-635. https://doi.org/10.1016/j.apm.2020.01.073.
  49. Vela, L.V., Reynolds-Barredo, J.M. and Sanchez, R. (2019), "A positioning algorithm for SPH ghost particles in smoothly curved geometries", J. Comput. Appl. Math., 353, 140-153. https://doi.org/10.1016/j.cam.2018.12.021.
  50. Yang, X. and Kong, S.C. (2017), "Smoothed particle hydrodynamics method for evaporating multiphase flows", Phys. Rev. E, 96(3), 033309. https://doi.org/10.1103/PhysRevE.96.033309.
  51. Yang, X. and Kong, S.C. (2019), "Adaptive resolution for multiphase smoothed particle hydrodynamics", Comput. Phys. Commun., 239, 112-125. https://doi.org/10.1016/j.cpc.2019.01.002.
  52. Yang, X., Dai, L. and Kong, S.C. (2017), "Simulation of liquid drop impact on dry and wet surfaces using SPH method", Proc. Combus. Inst., 36(2), 2393-2399. https://doi.org/10.1016/j.proci.2016.07.031.
  53. Yoon, K., Kim, D.N. and Lee, P.S. (2017), "Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution", Struct. Eng. Mech., 62(1), 33-42. https://doi.org/10.12989/sem.2017.62.1.033.
  54. Yoon, K., Lee, Y. and Lee, P.S. (2012), "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities", Struct. Eng. Mech., 43(4), 411-437. http://dx.doi.org/10.12989/sem.2012.43.4.411.
  55. Zheng, X. and Duan, W.Y. (2010) "Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior", J. Marine Sci. Appl., 9(1), 34-41. https://doi.org/10.1007/s11804-010-8037-9.
  56. Zheng, X., Lv, X., Ma, Q., Duan, W., Khayyer, A. and Shao, S. (2018), "An improved solid boundary treatment for wave-float interactions using ISPH method", Int. J. Naval Arch. Ocean Eng., 10(3), 329-347. https://doi.org/10.1016/j.ijnaoe.2017.08.001.
  57. Zheng, X., Ma, Q. and Shao, S. (2018), "Study on SPH viscosity term formulations", Appl. Sci., 8(2), 249. https://doi.org/10.3390/app8020249.