과제정보
This research received funding from the Transportation science and technology program of Hebei Province (Grant No. C18L00580).
참고문헌
- AASHTO LRFD (2010), AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials; Washington, D.C, USA.
- Ahn I.S., et al. (2004), "Effective flange width provisions for composite steel bridges", Eng. Struct., 26(12), 1843-1851. http://doi.org/10.1016/j.engstruct.2004.07.009.
- Aref A.J., et al. (2007), "Effective slab width definition for negative moment regions of composite bridges", J. Bridge Eng., 12(3), 339-349. http://doi.org/10.1061/(asce)1084-0702(2007)12:3(339).
- Ballio, G. and Castiglioni, C.A. (1995), "A Unified Approach for the Design of Steel Structures under Low and/or High Cycle Fatigue", J. Constr. Steel Res., 34, 75-101. http://doi.org/10.1016/0143-974X(95)97297-B.
- Castro, J.M., Elghazouli, A.Y. and Izzuddin, B.A. (2017), "Assessment of effective slab widths in composite beam", J. Constr. Steel Res., 63, 1317-1327. http://doi.org/10.1016/j.jcsr.2006.11.018.
- Chen, J., et al. (2014), "Closed-form solution for shear lag with derived flange deformation function", J. Constr. Steel Res., 102, 104-110. http://doi.org/10.1016/j.jcsr.2014.07.003.
- Chen S.S., et al. (2007), "Proposed effective width criteria for composite bridge girders", J. Bridge Eng., 12(3), 325-338. http://doi.org/10.1061/(asce)1084-0702(2007)12:3(325).
- Chiewanichakorn, M., et al. (2004), "Effective flange width definition for steel-concrete composite bridge girder", J. Struct. Eng., 130(12), 2016-2031 http://doi.org/10.1061/(asce)0733-9445(2004)130:12(2016).
- Dezi, L., et al. (2001), "Time-dependent analysis of shear-lag effect in composite beams", J. Eng. Mech., 127(1), 71-79. http://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71).
- Dezi, L., Gara, F. and Leoni, G. (2006), "Effective slab width in prestressed twin-girder composite decks", J. Struct. Eng., 132(9), 1358-1370. http://doi.org/10.1061/(asce)0733-9445(2006)132:9(1358).
- Eurocode 4 (2004), EC4 design of composite steel and concrete structures - part 1.1: general rules and rules for buildings. British Standards Institution.
- Gara, F., Ranzi, G. and Leoni, G. (2008), "Analysis of the shear lag effect in composite bridges with complex static schemes by means of a deck finite element", Int. J. Steel Struct., 8(4), 249-260. http://doi.org/10.1109/TITS.2008.2006799.
- Gara, F., Leoni, G. and Dezi, L. (2009), "A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks", Eng. Struct., 31(8), 1888-1902. http://doi.org/10.1016/j.engstruct.2009.03.017.
- Gara, F., Ranzi, G. and Leoni, G. (2011), "Partial interaction analysis with shear-lag effects of composite bridges: a finite element implementation for design applications", Adv. Steel Constr., 7(1), 1-16.
- Gara F., Ranzi G. and Leoni G. (2011), "Simplified method of analysis accounting for shear-lag effects in composite bridge decks", J. Constr. Steel Res., 67(10), 1684-1697. http://doi.org/10.1016/j.jcsr.2011.04.013.
- GB50917 (2013), Code for design of steel and concrete composite bridges, Ministry of Housing and Urban-Rural Development; Beijing, China.
- Henriques, D., Goncalves, R. and Camotim, D. (2015), "A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects", Thin-Wall. Struct., 90, 202-215. http://doi.org/10.1016/j.tws.2015.01.010.
- JTG D64 (2015), Specifications for design of highway steel bridge, Ministry of Transport of the People's Republic of China; Beijing, China.
- Kristek, V., Evan, H.R. and Ahmad, M.K.M. (1990), "A shear lag analysis for composite box girders", J. Constr. Steel Res., 16, 1-21. http://doi.org/10.1016/0143-974X(90)90002-X.
- Lin, W., Yoda, T. and Taniguchi, N. (2013), "Fatigue tests on straight steel-concrete composite beams subjected to hogging moment", J. Constr. Steel Res., 80, 42-56. http://doi.org/10.1016/j.jcsr.2012.09.009.
- Macorini, L., Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel concrete composite beams: FE modelling for effective width evaluation", Eng. Structures, 28, 1110-1121. http://doi.org/10.1016/j.engstruct.2005.12.002.
- Masoudnia, R. (2020), "State of the art of the effective flange width for composite T-beams", Constr. Build. Mater., 244, 118303. http://doi.org/10.1016/j.conbuildmat.2020.118303.
- McKenna, F. and Fenves, G.L. (2015), OpenSees 2.5.0, Computer Software. UC Berkeley, Berkeley (CA); 2015. http://opensees.berkeley.edu.
- Okui, Y. and Nagai, M. (2007), "Block FEM for time-dependent shear-lag behavior in two I-girder composite bridges", J. Bridge Eng.g, 12(1), 72-79. http://doi.org/10.1061/(ASCE)1084-0702(2007)12:1(72).
- Reissner, E. (1946), "Analysis of shear lag in box beams by the principle of minimum potential energy", Quarterly Appl. Math., 5, 267-278. http://doi.org/10.1090/qam/17176.
- Sun, F.F. and Bursi, O. (2005), "Displacement-based and two-field mixed variational formulation for composite beams with shear lag", J. Mech. Eng., 131(2), 199-210. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(199)
- Tevatia, A. and Srivastava, S.K. (2015), "Modified shear lag theory based fatigue crack growth life prediction model for short-fiber reinforced metal matrix composites", Int. J. Fatigue, 70, 123-129. http://doi.org/10.1016/j.ijfatigue.2014.09.004.
- Uriz, P.(2005), "Towards earthquake resistant design of concentrically braced steel structures, Doctoral Dissertation, Structural Engineering, Mechanics, and Materials", University of California, Berkeley, 2005.
- Wang, J.J., Liu, C., Fan, J.S., Hajjar, J.F. and Nie, X. (2019), "Triaxial Concrete Constitutive Model for Simulation of Composite Plate Shear Wall-Concrete Encased: Thuc3", J. Struct. Eng., 145(9), 04019088. http://doi.org/10.1061/(ASCE)ST.1943-541X.0002355.
- Wang, Y.H. and Nie, J.G. (2015), "Effective flange width of steel-concrete composite beam with partial openings in concrete slab", Mater. Struct., 48, 3331-3342. http://doi.org/10.1617/s11527-014-0402-8.
- Yan, W.T., Han, B., Zhu, L., Jiao, Y.Y. and Xie, H.B. (2019), "A fiber beam element model for elastic-plastic analysis of girders with shear lag effects", Steel Compos. Struct., 32(5), 657-670. http://doi.org/10.12989/scs.2019.32.5.657.
- Yuan, H., et al. (2016), "Element-based effective width for deflection calculation of steel-concrete composite beams", J. Constr. Steel Res., 121, 163-172. http://doi.org/10.1016/j.jcsr.2016.02.010.
- Zhang, Y.L., et al. (2010), "Study of the shear lag effect and the effective flange width at negative moment zone of steel-concrete composite beams", Eng. Mech., 27, 178-185. (in Chinese). http://doi.org/10.3724/SP.J.1011.2010.01138.
- Zhou, W., Jiang, L. and Yu, Z. (2013), "Analysis of free vibration characteristic of steel-concrete composite box-girder considering shear lag and slip", J. Central South Univ., 20(9), 2570-2577. http://doi.org/10.1007/s11771-013-1770-x.
- Zhu, L., et al. (2015), "Simplified analysis method accounting for shear-lag effect of steel-concrete composite decks", J. Constr. Steel Res., 115, 62-80. http://doi.org/10.1016/j.jcsr.2015.08.020.