DOI QR코드

DOI QR Code

A Potential New Mouse Model of Axial Spondyloarthritis Involving the Complement System

  • V. Michael Holers (Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus) ;
  • Francisco G. La Rosa (Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus) ;
  • Nirmal K. Banda (Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus)
  • Received : 2021.10.18
  • Accepted : 2021.12.04
  • Published : 2021.12.31

Abstract

Many mouse models of rheumatoid arthritis have been identified, but only a limited number are present for axial spondyloarthritis (AxSpA). Collagen Ab-induced arthritis (CAIA) is one of the most widely used mouse models of arthritis, and it is complement-dependent. We found that mice developing CAIA also developed spinal lesions similar to those found in AxSpA. To induce CAIA, mice were injected intraperitoneally at day 0 with anti-collagen Abs, followed by LPS injection at day 3. CAIA mice demonstrated a significant kyphosis through the spine, as well as hypertrophic cartilage and osseous damage of the intravertebral joints. Immunohistochemical staining of the kyphotic area revealed increased complement C3 deposition and macrophage infiltration, with localization to the intravertebral joint margins. Near Infrared (NIR) in vivo imaging showed that anti-collagen Abs conjugated with IRDye® 800CW not only localized to cartilage surface in the joints but also to the spine in arthritic mice. We report here a novel preclinical mouse model in which, associated with the induction of CAIA, mice also exhibited salient features of AxSpA; this new experimental model of AxSpA may allow investigators to shed light on the local causal mechanisms of AxSpA bone and soft tissue changes as well as treatment.

Keywords

Acknowledgement

Dr. Banda is grateful to faculty members and also an international scientists because after the discovery phase some or all of these data has been shared from time to time prior to publication for consultation with Dr. Robert I. Scheinman, PhD, University of Colorado Anschutz, Dr. Liron Kaplan, MD, PhD Denver Veterans Affairs Medical Center and Dr. Anne Troldborg, MD, PhD, Aarhus University Hospital, Denmark. The National Institutes of Health grant R01AR51749 to VMH (PI) and NKB (Co-I).

References

  1. Walsh J, Hunter T, Schroeder K, Sandoval D, Bolce R. Trends in diagnostic prevalence and treatment patterns of male and female ankylosing spondylitis patients in the United States, 2006-2016. BMC Rheumatol 2019;3:39.
  2. Braun J, Bollow M, Remlinger G, Eggens U, Rudwaleit M, Distler A, Sieper J. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 1998;41:58-67. https://doi.org/10.1002/1529-0131(199801)41:1<58::AID-ART8>3.0.CO;2-G
  3. Tran TM, Dorris ML, Satumtira N, Richardson JA, Hammer RE, Shang J, Taurog JD. Additional human beta2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum 2006;54:1317-1327. https://doi.org/10.1002/art.21740
  4. Baeten D, Breban M, Lories R, Schett G, Sieper J. Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype? Arthritis Rheum 2013;65:12-20. https://doi.org/10.1002/art.37829
  5. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, Gorman DM, Bowman EP, McClanahan TK, Yearley JH, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 2012;18:1069-1076. https://doi.org/10.1038/nm.2817
  6. Liu CH, Raj S, Chen CH, Hung KH, Chou CT, Chen IH, Chien JT, Lin IY, Yang SY, Angata T, et al. HLAB-27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest 2019;129:5357-5373. https://doi.org/10.1172/JCI125212
  7. Colbert RA, DeLay ML, Klenk EI, Layh-Schmitt G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev 2010;233:181-202. https://doi.org/10.1111/j.0105-2896.2009.00865.x
  8. Kingsbury DJ, Mear JP, Witte DP, Taurog JD, Roopenian DC, Colbert RA. Development of spontaneous arthritis in beta2-microglobulin-deficient mice without expression of HLA-B27: association with deficiency of endogenous major histocompatibility complex class I expression. Arthritis Rheum 2000;43:2290-2296. https://doi.org/10.1002/1529-0131(200010)43:10<2290::AID-ANR17>3.0.CO;2-6
  9. Liu Y, Liao X, Shi G. Autoantibodies in spondyloarthritis, focusing on anti-CD74 antibodies. Front Immunol 2019;10:5.
  10. Taams LS, Steel KJ, Srenathan U, Burns LA, Kirkham BW. IL-17 in the immunopathogenesis of spondyloarthritis. Nat Rev Rheumatol 2018;14:453-466. https://doi.org/10.1038/s41584-018-0044-2
  11. Curry R, Thoen J, Shelborne C, Gaudernack G, Messner R. Antibodies to and elevations of beta 2 microglobulin in the serum of ankylosing spondylitis patients. Arthritis Rheum 1982;25:375-380. https://doi.org/10.1002/art.1780250403
  12. Charriere G, Hartmann DJ, Vignon E, Ronziere MC, Herbage D, Ville G. Antibodies to types I, II, IX, and XI collagen in the serum of patients with rheumatic diseases. Arthritis Rheum 1988;31:325-332. https://doi.org/10.1002/art.1780310303
  13. Husakova M, Bay-Jensen AC, Forejtova S, Zegzulkova K, Tomcik M, Gregova M, Bubova K, Horinkova J, Gatterova J, Pavelka K, et al. Metabolites of type I, II, III, and IV collagen may serve as markers of disease activity in axial spondyloarthritis. Sci Rep 2019;9:11218.
  14. Tani Y, Sato H, Tanaka N, Mori K, Doida Y, Hukuda S. Serum IgA1 and IgA2 subclass antibodies against collagens in patients with ankylosing spondylitis. Scand J Rheumatol 1997;26:380-382. https://doi.org/10.3109/03009749709065703
  15. Holers VM, Banda NK. Complement in the initiation and evolution of rheumatoid arthritis. Front Immunol 2018;9:1057.
  16. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol 2013;33:479-492. https://doi.org/10.1016/j.semnephrol.2013.08.001
  17. Banda NK, Takahashi K, Wood AK, Holers VM, Arend WP. Pathogenic complement activation in collagen antibody-induced arthritis in mice requires amplification by the alternative pathway. J Immunol 2007;179:4101-4109. https://doi.org/10.4049/jimmunol.179.6.4101
  18. Lofchy LA, Vu VP, Banda NK, Ramirez JR, Smith WJ, Gifford G, Gaikwad H, Scheinman RI, Simberg D. Evaluation of targeting efficiency of joints with anticollagen II antibodies. Mol Pharm 2019;16:2445-2451. https://doi.org/10.1021/acs.molpharmaceut.9b00059
  19. Abdelaziz MM, Gamal RM, Ismail NM, Lafy RA, Hetta HF. Diagnostic value of anti-CD74 antibodies in early and late axial spondyloarthritis and its relationship to disease activity. Rheumatology (Oxford) 2021;60:263-268.  https://doi.org/10.1093/rheumatology/keaa292
  20. Kinsella TD, Espinoza L, Vasey FB. Serum complement and immunoglobulin levels in sporadic and familial ankylosing spondylitis. J Rheumatol 1975;2:308-313.
  21. Krauledat PB, Krapf FE, Manger B, Kalden JR. Evaluation of plasma C3d and immune complex determinations in the assessment of disease activity of patients with rheumatoid arthritis, systemic lupus erythematosus, and spondylitis ancylopoetica. Rheumatol Int 1985;5:97-101. https://doi.org/10.1007/BF00541327
  22. Panayi GS, Slaney J, Williams BD. Circulating immune complexes in patients with ankylosing spondylitis. Ann Rheum Dis 1980;39:445-448. https://doi.org/10.1136/ard.39.5.445
  23. Yang C, Ding P, Wang Q, Zhang L, Zhang X, Zhao J, Xu E, Wang N, Chen J, Yang G, et al. Inhibition of complement retards ankylosing spondylitis progression. Sci Rep 2016;6:34643.
  24. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, Derksen RH, DE Groot PG, Koike T, Meroni PL, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295-306. https://doi.org/10.1111/j.1538-7836.2006.01753.x
  25. Bardos T, Szabo Z, Czipri M, Vermes C, Tunyogi-Csapo M, Urban RM, Mikecz K, Glant TT. A longitudinal study on an autoimmune murine model of ankylosing spondylitis. Ann Rheum Dis 2005;64:981-987. https://doi.org/10.1136/ard.2004.029710
  26. Glant TT, Mikecz K, Arzoumanian A, Poole AR. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 1987;30:201-212. https://doi.org/10.1002/art.1780300211
  27. Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, Sayad A, Stagg AJ, Fox GM, Le O'Brien A, et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999;169:209-223. https://doi.org/10.1111/j.1600-065X.1999.tb01317.x
  28. Weinreich S, Eulderink F, Capkova J, Pla M, Gaede K, Heesemann J, van Alphen L, Zurcher C, Hoebe-Hewryk B, Kievits F, et al. HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice. Hum Immunol 1995;42:103-115. https://doi.org/10.1016/0198-8859(94)00034-N
  29. Khare SD, Hansen J, Luthra HS, David CS. HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m. J Clin Invest 1996;98:2746-2755. https://doi.org/10.1172/JCI119100
  30. Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, Velasco J, Strutton G, Tran A, Benham H, et al. β-glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice. Arthritis Rheum 2012;64:2211-2222. https://doi.org/10.1002/art.34423
  31. Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Whitehouse DL, Cook HT, Burnstock G, et al. P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J Am Soc Nephrol 2009;20:1275-1281. https://doi.org/10.1681/ASN.2008060559
  32. Banda NK, Thurman JM, Kraus D, Wood A, Carroll MC, Arend WP, Holers VM. Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen-induced arthritis. J Immunol 2006;177:1904-1912. https://doi.org/10.4049/jimmunol.177.3.1904
  33. Tseng HW, Pitt ME, Glant TT, McRae AF, Kenna TJ, Brown MA, Pettit AR, Thomas GP. Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes. Arthritis Res Ther 2016;18:35.
  34. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, Merkel TJ, Stahl GL, Mueller-Ortiz S, Wetsel R, et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol 2012;188:1469-1478. https://doi.org/10.4049/jimmunol.1102310
  35. Neerinckx B, Kollnberger S, Shaw J, Lories R. No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA. RMD Open 2017;3:e000451.
  36. Barczynska TA, Wegierska M, Zuchowski P, Dura M, Zalewska J, Waszczak M, Jeka S. Coexistence of rheumatoid arthritis and ankylosing spondylitis. Reumatologia 2015;53:279-285. https://doi.org/10.5114/reum.2015.55832
  37. Brinch L, Vinje O, Teisberg P, Mellbye OJ, Aakesson I. The in-vivo metabolism of C3 in ankylosing spondylitis. Ann Rheum Dis 1982;41:86-89. https://doi.org/10.1136/ard.41.1.86
  38. Baeten D, Kruithof E, De Rycke L, Boots AM, Mielants H, Veys EM, De Keyser F. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther 2005;7:R359-R369. https://doi.org/10.1186/ar1501
  39. Kruithof E, Baeten D, De Rycke L, Vandooren B, Foell D, Roth J, Canete JD, Boots AM, Veys EM, De Keyser F. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther 2005;7:R569-R580. https://doi.org/10.1186/ar1698
  40. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, et al. Arthritis critically dependent on innate immune system players. Immunity 2002;16:157-168. https://doi.org/10.1016/S1074-7613(02)00275-3
  41. Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL, et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999;10:451-461. https://doi.org/10.1016/S1074-7613(00)80045-X
  42. Maccioni M, Zeder-Lutz G, Huang H, Ebel C, Gerber P, Hergueux J, Marchal P, Duchatelle V, Degott C, van Regenmortel M, et al. Arthritogenic monoclonal antibodies from K/BxN mice. J Exp Med 2002;195:1071-1077. https://doi.org/10.1084/jem.20011941
  43. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014;5:520.
  44. Banda NK. An accidental discovery of a new potential mouse model of the axial spondyloarthritis. J Immunol 2019;202:133. 
  45. Banda NK, Mehta G, Kjaer TR, Takahashi M, Schaack J, Morrison TE, Thiel S, Arend WP, Holers VM. Essential role for the lectin pathway in collagen antibody-induced arthritis revealed through use of adenovirus programming complement inhibitor MAp44 expression. J Immunol 2014;193:2455-2468. https://doi.org/10.4049/jimmunol.1400752
  46. Tani Y, Sato H, Hukuda S. Autoantibodies to collagens in Japanese patients with ankylosing spondylitis. Clin Exp Rheumatol 1997;15:295-297.
  47. von Muhlen CA, Tan EM. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 1995;24:323-358. https://doi.org/10.1016/S0049-0172(95)80004-2
  48. Mohan C, Assassi S. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity? BMJ 2015;351:h5079.
  49. Yoshida M, Tsuji M, Kurosaka D, Kurosaka D, Yasuda J, Ito Y, Nishizawa T, Yamada A. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod Rheumatol 2006;16:276-281. https://doi.org/10.3109/s10165-006-0498-y