과제정보
This study was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, which is funded by the Ministry of Health & Welfare, Republic of Korea (grant No. HW20C2062) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017M3A9G6068254).
참고문헌
- Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-478. https://doi.org/10.1016/S0140-6736(20)31604-4
- Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 2015;217:345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
- Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020;383:2439-2450. https://doi.org/10.1056/NEJMoa2027906
- Kalimuddin S, Tham CYL, Qui M, de Alwis R, Sim JXY, Lim JME, Tan HC, Syenina A, Zhang SL, Le Bert N, et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (N Y) 2021;2:682-688.e4. https://doi.org/10.1016/j.medj.2021.04.003
- Muller L, Andree M, Moskorz W, Drexler I, Walotka L, Grothmann R, Ptok J, Hillebrandt J, Ritchie A, Rabl D, et al. Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Clin Infect Dis 2021;ciab381.
- Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, Bermudez-Gonzalez MC, Bielak DA, Carreno JM, Chernet RL, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 2021;384:1372-1374. https://doi.org/10.1056/NEJMc2101667
- van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020;586:578-582. https://doi.org/10.1038/s41586-020-2608-y
- McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines 2021;6:74.
- Giurgea LT, Memoli MJ. Navigating the quagmire: comparison and interpretation of COVID-19 vaccine phase 1/2 clinical trials. Vaccines (Basel) 2020;8:746.
- Rogliani P, Chetta A, Cazzola M, Calzetta L. SARS-CoV-2 neutralizing antibodies: a network meta-analysis across vaccines. Vaccines (Basel) 2021;9:227.
- Kim JY, Kwon JS, Bae S, Cha HH, Lim JS, Kim MC, Chung JW, Park SY, Lee MJ, Kim BN, et al. SARS-CoV-2-specific antibody and T cell response kinetics according to symptom severity. Am J Trop Med Hyg 2021;tpmd201594.
- Classen DC, Morningstar JM, Shanley JD. Detection of antibody to murine cytomegalovirus by enzyme-linked immunosorbent and indirect immunofluorescence assays. J Clin Microbiol 1987;25:600-604. https://doi.org/10.1128/jcm.25.4.600-604.1987
- Lardeux F, Torrico G, Aliaga C. Calculation of the ELISA's cut-off based on the change-point analysis method for detection of Trypanosoma cruzi infection in Bolivian dogs in the absence of controls. Mem Inst Oswaldo Cruz 2016;111:501-504. https://doi.org/10.1590/0074-02760160119
- Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021;396:1979-1993. https://doi.org/10.1016/S0140-6736(20)32466-1
- Hasanpourghadi M, Novikov M, Ertl HC. COVID-19 vaccines based on adenovirus vectors. Trends Biochem Sci 2021;46:429-430. https://doi.org/10.1016/j.tibs.2021.03.002
- Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 1997;94:3352-3356. https://doi.org/10.1073/pnas.94.7.3352
- Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 1998;72:415-419. https://doi.org/10.1128/JVI.72.1.415-419.1998
- Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stoter M, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013;31:638-646. https://doi.org/10.1038/nbt.2612
- Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther 2019;27:757-772. https://doi.org/10.1016/j.ymthe.2019.01.020
- Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines. Curr Opin Immunol 2016;41:18-22. https://doi.org/10.1016/j.coi.2016.05.008
- Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Wicke L, Perkovic M, Beissert T, Haas H, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther 2018;26:446-455. https://doi.org/10.1016/j.ymthe.2017.11.017
- Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020;370:89-94. https://doi.org/10.1126/science.abd3871
- Schmidt KG, Nganou-Makamdop K, Tenbusch M, El Kenz B, Maier C, Lapuente D, uberla K, Spriewald B, Bergmann S, Harrer EG, et al. SARS-CoV-2-seronegative subjects target CTL epitopes in the SARS-CoV-2 nucleoprotein cross-reactive to common cold coronaviruses. Front Immunol 2021;12:627568.