DOI QR코드

DOI QR Code

Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes

  • Hobiny, Aatef D. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University) ;
  • Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
  • Received : 2020.12.31
  • Accepted : 2021.02.25
  • Published : 2021.05.10

Abstract

In this paper, a mathematical model is used to the evaluation of thermoelastic interactions in fiber-reinforced material with a spherical cavity. With the goal of establishing the generalized thermoelastic model with thermal relaxation time are exploited. inner surface of the spherical cavity is tractions free and loaded by the uniform step in temperature. The finite element scheme is used to get the problem numerical solutions. The numerical results have been discussed graphically to show the impacts of the presence and the absence of reinforcement.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 118-130-1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana-Acad. Proc. Eng. Sci., 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.
  2. Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239. https://doi.org/10.1016/j.aml.2012.09.001.
  3. Abbas, I.A. (2014), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. http://dx.doi.org/10.1139/cjp-2014-0387.
  4. Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  5. Abbas, I.A. (2015), "Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source", J. Magnet. Magnetic Mater., 377, 452-459. https://doi.org/10.1016/j.jmmm.2014.10.159.
  6. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
  7. Abbas, I.A., El-Amin, M. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  8. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.
  9. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
  10. Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E: Low Dimens. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
  11. Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theor. Nanos., 11(2), 331-338. https://doi.org/doi/10.1166/jctn.2014.3356.
  12. Abouelregal, A.E. and Zenkour, A.M. (2013), "The effect of fractional thermoelasticity on a two-dimensional problem of a mode i crack in a rotating fiber-reinforced thermoelastic medium", Chin. Phys. B, 22(10), 108102. https://doi.org/10.1088/1674-1056/22/10/108102.
  13. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://dx.doi.org/10.12989/scs.2016.22.2.369.
  14. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., 19(1), 33-38. http://doi.org/10.12989/sss.2017.19.1.033.
  15. Belfield, A., Rogers, T. and Spencer, A. (1983), "Stress in elastic plates reinforced by fibres lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
  16. Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of Motile Gyrotactic Microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.
  17. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. http://dx.doi.org/10.1063/1.1722351.
  18. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. http://dx.doi.org/10.12989/sss.2020.25.2.197.
  19. Ezzat, M. and El-Bary, A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. http://doi.org/10.12989/sss.2016.18.4.707.
  20. Gupta, R.R. and Gupta, R.R. (2013), "Analysis of wave motion in an anisotropic initially stressed fiberreinforced thermoelastic medium", Earthq. Struct., 4(1), 1-10. http://doi.org/10.12989/eas.2013.4.1.001.
  21. Hashin, Z. and Rosen, B.W. (1964), "The elastic moduli of fiber-reinforced materials", J. Appl. Mech., 31(2), 223-232. https://doi.org/10.1115/1.3629590.
  22. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  23. Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080, https://doi.org/10.1615/HeatTransRes.2018028397.
  24. Kondaiah, P. and Shankar, K. (2017), "Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. http://doi.org/10.12989/sss.2017.19.3.299.
  25. Kumar, R. and Gupta, R.R. (2010), "Study of wave motion in an anisotropic fiber-reinforced thermoelastic solid", J. Solid Mech., 2(1), 91-100.
  26. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  27. Lotfy, K. (2012), "Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem", Chin. Phys. B, 21(1), 014209. https://doi.org/10.1088/1674-1056/21/1/014209.
  28. Lotfy, K. and Othman, M.I.A. (2014), "The effect of magnetic field on 2-D problem for a mode-I Crack of a fiber-reinforced in generalized Thermoelasticity", Int. J. Thermophys., 35(1), 154-174. https://doi.org/10.1007/s10765-013-1540-x.
  29. Ma, Y., Cao, L. and He, T. (2018), "Variable properties thermopiezoelectric problem under fractional thermoelasticity", Smart Struct. Syst., 21(2), 163-170. http://doi.org/10.12989/sss.2018.21.2.163.
  30. Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.-T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. http://doi.org/10.12989/sss.2019.24.2.267.
  31. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  32. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232.
  33. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continu. Mech. Thermodyna., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  34. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry. 11(7), 863. https://doi.org/10.3390/sym11070863.
  35. Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  36. Nowacki, W. (1975), Dynamic Problems of Thermoelasticity, Springer Science & Business Media.
  37. Othman, M.I.A. and Lotfy, K. (2013), "The effect of magnetic field and rotation of the 2-D problem of a fiber-reinforced thermoelastic under three theories with influence of gravity", Mech. Mater., 60, 129-143 https://doi.org/10.1016/j.mechmat.2013.01.007.
  38. Othman, M.I.A. and Said, S.M. (2012), "The effect of mechanical force on generalized thermoelasticity in a fiber-reinforcement under three theories", Int. J. Thermophys., 33(6), 1082-1099. https://doi.org/10.1007/s10765-012-1203-3.
  39. Othman, M.I.A. and Said, S.M. (2013), "Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories", Int. J. Thermophys., 34(2), 366-383. https://doi.org/10.1007/s10765-013-1417-z.
  40. Sadowski, T., Marsavina, L., Peride, N. and Craciun, E.-M. (2009), "Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods", Comput. Mater. Sci., 46(3), 687-693. https://doi.org/10.1016/j.commatsci.2009.06.006.
  41. Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.
  42. Sarkar, N. and Lahiri, A. (2013), "The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under lord-shulman theory", J. Therm. Stress., 36(9), 895-914. https://doi.org/10.1080/01495739.2013.770709.
  43. Sengupta, P. and Nath, S. (2001), "Surface waves in fibre-reinforced anisotropic elastic media", Sadhana, 26(4), 363-370. https://doi.org/10.1007/BF02703405.
  44. Singh, B. and Singh, S.J. (2004), "Reflection of plane waves at the free surface of a fibre-reinforced elastic half-space", Sadhana, 29(3), 249-257. https://doi.org/10.1007/BF02703774.
  45. Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. http://doi.org/10.12989/sss.2015.16.5.853.
  46. Spencer, A.J.M. (1972), Deformations of Fibre-reinforced Materials, Clarendon Press, Oxford.
  47. Verma, P. (1986), "Magnetoelastic shear waves in self-reinforced bodies", Int. J. Eng. Sci., 24(7), 1067-1073. https://doi.org/10.1016/0020-7225(86)90002-9.
  48. Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.
  49. Zenkour, A.M. and Abbas, I.A. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element model", J. Vib. Control, 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.
  50. Zenkour, A.M. and Abbas, I.A. (2014), "Thermal shock problem for a fiber-reinforced anisotropic half-space placed in a magnetic field via GN model", Appl. Math. Comput., 246 482-490. https://doi.org/10.1016/j.amc.2014.08.052.