DOI QR코드

DOI QR Code

Wave-structure interaction of coastal reinforced concrete piles with bracing and different arrangements

  • 투고 : 2019.07.02
  • 심사 : 2021.04.04
  • 발행 : 2021.05.10

초록

Wave interaction in marine structures is an important issue where requires to be considered in view of number of bases, piles and arrangement method. In this research, effect of waves and their forces on piles with different arrangements was investigated using numerical modeling. Simulations were performed in presence of bracing elements between piles against the force of waves and also were compared with simple arrangement without bracing elements in different arrangements. Results showed that in models that were fitted with bracing elements, the displacement rate reduced about 96%, and tension tolerances increased more than 53% and abutment responses also decreased about 70%.

키워드

과제정보

The author would like to thank Dr. Mohammad Hadi Erfani for his helpful advice on various technical issues examined in this Paper.

참고문헌

  1. Abbasi, A, Taghvaei, S.M. and Sarkardeh, H. (2018), "Numerical study on effect of coastal pile arrangements on wave characteristics", J. Mar. Sci. Appl., 17(4), 510-518. https://doi.org/10.1007/s11804-018-0039-z.
  2. Abdussamie, N., Drobyshevski, Y., Ojeda, R., Thomas, G. and Amin, W. (2017), "Experimental investigation of wave-in-deck impact events on a TLP model", Ocean Eng., 142, 541-562. https://doi.org/10.1016/j.oceaneng.2017.07.037.
  3. Akbarian, E., Najafi, B., Jafari, M., Faizollahzadeh Ardabili, S., Shamshirband, S. and Chau, K.W. (2018), "Experimental and CFD-based numerical simulation of using natural gas in a dualfuelled diesel engine", Eng. Appl. Comput. Fluid Mech., 12(1), 517-534. https://doi.org/10.1080/19942060.2018.1472670.
  4. Akdag, C.T. (2016), "Behavior of closely spaced double-pile-supported jacket foundations for offshore wind energy converters", Appl. Ocean Res., 58, 164-177. https://doi.org/10.1016/j.apor.2016.04.008.
  5. API RP 2A WSD (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design.
  6. Baghban, A.R., Sasanipour, J., Pourfayaz, F., Ahmadi, M.H., Kasaeian, A., Chamkha, A., Oztop, H.F. and Chau, K.W. (2019), "Towards experimental and modeling study of heat transfer performance of water- SiO2 nanofluid in quadrangular cross-section channels", Eng. Appl. Comput. Fluid Mech., 13(1), 453-469. https://doi.org/10.1080/19942060.2019.1599428.
  7. Chau, K.W. and Jiang, Y.W. (2001), "Three-dimensional pollutant transport model for the Pearl River estuary", Water Res., 36(8), 2029-2039. https://doi.org/10.1016/S0043-1354(01)00400-6.
  8. El-Gamal, A.R., Essa, A. and Ismail, A. (2014), "Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves", Ocean Syst. Eng., 4(4), 327-342. https://doi.org/10.12989/ose.2014.4.4.327.
  9. Goel, R.K. (2010), "Approximate seismic displacement capacity of piles in marine oil terminals", Earthq. Struct., 1(1), 129-146. https://doi.org/10.12989/eas.2010.1.1.129.
  10. Hosseini, R., Fazloula, R., Saneie, M. and Amini, A. (2017), "Bagged neural network for estimating scour depth around pile groups", Int. J. River Basin Manag., 16(4), 401-412. https://doi.org/10.1080/15715124.2017.1372449.
  11. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.
  12. Kim, D. and Kim, J. (2019), "Numerical method to simulate detonative combustion of hydrogen-air mixture in a containment", Eng. Appl. Comput. Fluid Mech., 13(1), 938-953. https://doi.org/10.1080/19942060.2019.1660219.
  13. Ko, K.O., Choi, J.W., Yoon, S.B. and Park, C.B. (2011), "Internal wave generation in flow 3D model", Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, U.S.A., June.
  14. Koraim, A.S., Iskander, M.M. and Elsayed, W.R. (2014), "Hydrodynamic performance of double rows of piles suspending horizontal c shaped bars", Coast. Eng., 84, 81-96. https://doi.org/10.1016/j.coastaleng.2013.11.006.
  15. Kumar, K.V., Saravanan, T.J., Sreekala, R., Gopalakrishnan, N. and Mini, K.M. (2017), "Structural damage detection through longitudinal wave propagation using spectral finite element method", Geomech. Eng., 12(1), 161-183. https://doi.org/10.12989/gae.2017.12.1.161.
  16. Liu, H., Ghidaoui, M.S., Huang, Z., Yuan, Z. and Wang, J. (2011), "Numerical investigation of the interactions between solitary waves and pile breakwaters using BGK-based methods", Comput. Math. Appl., 61(12), 3668-3677. https://doi.org/10.1016/j.camwa.2010.06.012.
  17. Myrhaug, D. and Fu, P. (2017), "Scour below pipelines due to random waves alone and random waves plus currents on mild slopes", Ocean Syst. Eng., 7(3), 275-298. https://doi.org/10.12989/ose.2017.7.3.275
  18. Myrhaug, D. and Rue, H. (2005), "Scour around group of slender vertical piles in random waves", Appl. Ocean Res., 27(1), 56-63. https://doi.org/10.1016/j.apor.2005.06.001.
  19. Park, M.C. and Nam, M.S. (2018), "Behavior of integral abutment bridge with partially protruded piles", Geomech. Eng., 14(6), 601-614. https://doi.org/10.12989/gae.2018.14.6.601.
  20. Ramezanizadeh, M., Nazari, M.A., Ahmadiand, M.H. and Chau, K.W. (2019), "Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger", Eng. Appl. Comput. Fluid Mech., 13(1), 40-47. https://doi.org/10.1080/19942060.2018.1518272.
  21. Salih, S.Q., Aldlemy, M.S., Rasani, M.R., Ariffin, A.K., Ya, T.M.Y.S.T., Al-Ansari, N., Yaseen, Z.M. and Chau, K.W. (2019), "Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method", Eng. Appl. Comput. Fluid Mech., 13(1), 860-877. https://doi.org/10.1080/19942060.2019.1652209.
  22. Sarkardeh, H., Zarrati, A.R. and Roshan, R. (2010), "Effect of intake head wall and trash rack on vortices", J. Hydraul. Res., 48(1), 108-112. https://doi.org/10.1080/00221680903565952.
  23. Shaghaghi Moghaddam, A., Mohammadnia, S. and Sagharichiha, M. (2015), "Analysis of offshore pipeline laid on 3D seabed configuration by ABAQUS", Ocean Syst. Eng., 5(1), 31-40. https://doi.org/10.12989/ose.2015.5.1.031.
  24. Shen, M. and Liu, Y. (2017), "Current effects on global motions of a floating platform in waves", Ocean Syst. Eng., 7(2), 121-141. https://doi.org/10.12989/ose.2017.7.2.121.
  25. Solaimani, N., Amini, A., Banejad, H. and Taherei Ghazvinei, P. (2017), "The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups", Int. J. River Basin Manag., 15(2), 219-225. https://doi.org/10.1080/15715124.2016.1274321.
  26. Tabeshpour, M.R., Erfani, M.H. and Sayyaadi, H. (2020), "Challenges in calculation of critical buckling load of tubular members of jacket platforms in finite element modeling", J. Mar. Sci. Technol., 25(3), 866-886. https://doi.org/10.1007/s00773-019-00686-5.
  27. Truitt, C.L. and Herbich, J.B. (1986), "Transmission of random waves through pile breakwaters", Proceedings of the 20th International Conference on Coastal Engineering, Taipei, Taiwan, November.
  28. Yaofeng, X., Liu, C., Gao, S., Tang, J. and Chen, Y. (2017), "Lateral load bearing capacity of offshore high-piled wharf with batter piles", Ocean Eng., 142, 377-387. https://doi.org/10.1016/j.oceaneng.2017.07.001.
  29. Yuan, Y., Xu, Y.S., Shen, J.S. and Wang, B.Z.F. (2018), "Hydraulic conductivity estimation by considering the existence of piles: A case study", Geomech. Eng., 14(5), 467-477. https://doi.org/10.12989/gae.2018.14.5.467.
  30. Zhang, Q., Zhou, X.L., Wang, J.H. and Guo, J.J. (2017), "Wave-induced seabed response around an offshore pile foundation platform", Ocean Eng., 130, 567-582. https://doi.org/10.1016/j.oceaneng.2016.12.016.
  31. Zhang, X., Li, Q., Ma, Y., Zhang, X. and Yang, S. (2014), "Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations", Geomech. Eng., 7(2), 201-212. http://doi.org/10.12989/gae.2014.7.2.201.
  32. Zhao, H.Y., Jeng, D.S., Zhang, Y., Zhang, J.S., Zhang, H.J. and Zhang, C. (2013), "3D numerical model for wave-induced seabed response around breakwater heads", Geomech. Eng., 5(6), 595-611. http://doi.org/10.12989/gae.2013.5.6.595.