Acknowledgement
The research project was financially supported by the Western Graduate Research Scholarship at the Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada. The authors would also like to acknowledge the Department of Civil Engineering, Fukuoka University, Fukuoka, Japan for providing Toyoura Sand for the current research project.
References
- Ahmad, S. (2016), "Piezoelectric device for measuring shear wave velocity of soils and evaluation of low and high strain shear modulus", Ph.D. Dissertation, Western University, London, Ontario, Canada.
- ASTM Standard (C150/C150M-12) (2011), Standard Specification for Portland Cement, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bartake, P.P. and Singh, D.N. (2006), "Studies of the determination of shear wave velocity in sands", Geomech. Geoeng., 1-9. https://doi.org/10.1080/17486020601065449.
- Cha, M., Santamarina, J., Kim, H. and Cho, G. (2014), "Technical Note. Small strain stiffness, shear wave velocity, and soil compressibility", J. Geotech. Geoenviron. Eng., 140(10), 6014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157
- Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. http://doi.org/10.12989/gae.2018.15.4.987.
- Consoli, N.C., Cruz, R.C., Floss, M.F. and Festugato, L. (2010), "Parameters controlling tensile and compressive strength of artificially cemented sand", J. Geotech. Geoenviron. Eng., 136(5), 759-763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
- Elbeggo, D., Hussien, M.N., Ethier, Y. and Karray, M. (2019), "Robustness of the P-RAT in the shear-wave velocity measurement of soft clays", J. Geotech. Geoenviron. Eng., 145(5), 04019014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002017
- Fernandez, A.L. and Santamarina, J.C. (2001), "Effect of cementation on the small-strain parameters of sands", Can. Geotech. J., 38, 191-199. https://doi.org/10.1139/t00-081.
- Fonseca, D.A.V., Ferreira, C. and Fahey, M. (2009), "A framework interpreting bender element tests, combining time-domain and frequency-domain methods", Geotech. Test. J., 32(2), 91-107. https://doi.org/10.1520/GTJ100974.
- Gamal El-Dean, D. (2007), "Development of a new piezo-electric pulse testing device and soil characterization using shear waves", Ph.D. Dissertation, Universite de Sherbrooke, Southern Quebec, Canada.
- Heineck, K.S., Coop, M.R. and Consoli, N.C. (2005), "Effect on microreinforcement of soils from very small to large shear strains", J. Geotech. Geoenviron. Eng., 131(8), 1024-1033. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1024).
- Hussien, M. and Karray, M. (2021), "Piezoelectric ring-actuator technique: In-depth scrutiny of interpretation method", Geotech. Test. J., 44(1). https://doi.org/10.1520/GTJ20180205.
- Karray, M., Romdhan, M.B., Hussien, M.N. and Ethier, Y. (2015), "Measuring shear wave velocity of granular material using the piezoelectric ring-actuator technique (P-RAT)", Can. Geotech. J., 52(9), 1302-1317. https://doi.org/10.1139/cgj-2014-0306.
- Mneina, A., Ahmed, A. and El-Naggar, M.H. (2018), "Dynamic properties of controlled low-strength materials with treated oil sand waste", J. Mater. Civ. Eng., 30(9), 277-285. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002338.
- Naji, S., Karray, M. and Khayat, K. (2017), "Versatility of piezoelectric ring actuator technique (P-RAT) for characterization of cement paste and mortar", Adv. Civ. Eng. Mater., 6(1), 189-212. https://doi.org/10.1520/ACEM20160039.
- Nakamichi, M. and Sato, K. (2013), "A method of suppressing liquefaction using a solidification material and tension stiffeners", Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, September.
- Oda, M. (1977), "On the Influence of progressive failure on the bearing capacity of shallow foundations in dense sand", Soils Found., 16, 71-73. https://doi.org/10.3208/sandf1972.16.4_11.
- Oztoprak, S. and Bolton, M. D. (2013), "Stiffness of sand through a laboratory test database", Geotechnique, 63(1), 54-70 http://doi.org/10.1680/geot.10.P.078.
- Safdar, M. (2018), "Monotonic stress-strain behavior of fiber reinforced cemented Toyoura sand", Ph.D. Dissertation, Western University, London, Ontario, Canada.
- Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T. and Shah, F. (2020), "Effect of fiber and cement additives on the small-strain stiffness behavior of Toyoura Sand", Sustainability, 12(24), 10468. https://doi.org/10.3390/su122410468.
- Salah, D. U. (2012), "Behavior of fiber reinforced cemented sand at high pressures", Ph.D. Dissertation, University of Nottingham, Nottingham, U.K.
- Schmidt, C.J. (2015), "Static and dynamic response of silty Toyoura Sand with PVA fiber and cement additives", Master Thesis, Western University, London, Ontario, Canada.
- Shirley, D.J. and Hampton, L.D. (1978), "Shear Wave Measurements in Laboratory Sediments", J. Acoust. Soc. Am., 63(2), 607-613. https://doi.org/10.1121/1.381760.
- Teachavorasinskun, S. and Pongvithayapanu, P. (2016), "Shear wave velocity of sands subject to large strain triaxial loading", Geomech. Eng., 11(5), 713-723. http://doi.org/10.12989/gae.2016.11.5.713.
- Whitlow, R. (2001), Basic Soil Mechanics, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
- Yang, J. and Liu, X. (2016), "Shear wave velocity and stiffness of sand: Rhe role of non-plastic fines", Geotechnique, 66(6), 500-514. http://doi.org/10.1680/jgeot.15.P.205
Cited by
- Consolidated drained (CID) behavior of fibre reinforced cemented Toyoura sand in triaxial loading conditions vol.12, pp.1, 2021, https://doi.org/10.1186/s40703-021-00165-0