Acknowledgement
This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 109-2221-E-006-015-MY3.
References
- Bich, D.H., Ninh, D.G., Kien, B.H. and Hui, D. (2016), "Nonlinear dynamical analyses of eccentrically stiffened functionally graded toroidal shell segments surrounded by elastic foundation in thermal environment", Compos. Part B, 95, 355-373. https://doi.org/10.1016/j.compositesb.2016.04.004.
- Bich, D.H., Ninh, D.G. and Thinh, T.I. (2016), "Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects", Compos. Part B, 87, 75-91. https://doi.org/10.1016/j.compositesb2015.10.021.
- Buchanan, G.R. and Liu, Y.J. (2005), "An analysis of the free vibration of thick-walled isotropic toroidal shells", Int. J. Mech. Sci., 47(2), 277-292. https://doi.org/10.1016/j.ijmecsci.2004.12.004.
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9, 87-140. https://doi.org/10.1007/BF02736649.
- Carrera, E. (2003a), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10, 215-296. https://doi.org/10.1007/BF02736224.
- Carrera, E. (2003b), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614.
- Carrera, E., Pagani, A. and Valvano, S. (2017), "Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures", Compos. Part B, 111, 294-314. https://doi.org/10.1016/j.compositesb.2016.12.001.
- Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
- Chun, C.K. and Dong, S.B. (1998), "Finite element analysis of shear deformation in laminated anisotropic shells of revolution", J. Sound Vib., 218(1), 164-176. https://doi.org/10.1006/jsvi.1998.1814.
- Ferreira, A.J.M., Carrera, E., Cinefra, M. and Zenkour, A.M. (2016), "A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-mixed variational theorem", Mech. Adv. Mater. Struct., 23(9), 1068-1079. https://dx.doi.org/10.1080/15376494.2015.1121557.
- Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. http://dx.doi.org/10.1016/j.compstruct.2012.09.001.
- Jiang, W. and Redekop, D. (2002), "Analysis of transversely isotropic hollow toroids using the semi-analytical DQM", Struct. Eng. Mech., 13(1), 103-116. https://doi.org/10.12989/sem.2002.13.1.103.
- Jiang, W. and Redekop, D. (2003), "Static and vibration analysis of orthotropic toroidal shells of variable thickness by differential quadrature", Thin-Wall. Struct., 41(5), 461-478. https://doi.org/10.1016/S0263-8231(02)00116-7.
- Kant, T., Jha, D.K. and Singh, R.K. (2014), "A higher-order shear and normal deformation functionally graded plate model: some recent results", Acta Mech., 225, 2865-2876. https://doi.org/10.1007/s00707-014-1213-2.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/ 10.12989/scs.2017.23.1.001.
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semianalytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.
- Noor, A.K. and Peters, J.M. (1987), "Analysis of laminated anisotropic shells of revolution", J. Eng. Mech., 113(1), 49-65. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:1(49).
- Noor, A.K. and Peters, J.M. (1988), "Stress and vibration analyses of anisotropic shells of revolution", Int. J. Numer. Method. Eng., 26(5), 1145-1167. https:// doi.org/10.1002/nme.1620260510.
- Redekop, D. (1992), "A displacement solution in toroidal elasticity", Int. J. Press. Vess. Pip., 51(2), 189-209. https://doi.org/10.1016/0308-0161(92)90080-Y.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells. CRC Press, New York.
- Sadd, M.H. (2005), Elasticity: Theory, Applications, and Numerics, New York.
- Shen, H.S. (2009), Functionally Graded Materials- Nonlinear Analysis of Plates and Shells, CRC Press, New York.
- Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
- Soedel, W. (1993), Vibrations of Shells and Plates, Marcel Dekker Inc., New York.
- Tarn, J.Q. and Xu, R. (2019), A Course in Theory of Elasticity, Zhejiang University Press, China.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York.
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Method. Appl. M., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B, 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
- Tornabene, F. and Viola, E. (2009), "Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution", Eur. J. Mech. A/Solids, 28(5), 991-1013. https://doi.org/10.1016/j.euromechsol.2009.04.005.
- Viola, E. and Tornabene, F. (2009), "Free vibration of three-parameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587-594. https://doi.org/10.1016/j.mechrescom.2009.02.001.
- Wang, X.H. and Redekop, D. (2005), "Natural frequencies and mode shapes of an orthotropic thin shell of revolution", Thin-Wall. Struct., 43(5), 735-750. https://doi.org/10.1016/j.tws.2004.12.001.
- Wang, X.H. and Redekop, D. (2011), "Free vibration analysis of moderately-thick and thick toroidal shells", Struct. Eng. Mech., 39(4), 449-463. https://doi.org/10.12989/sem.2011.39.4.449.
- Wu, C.P. and Huang, H.Y. (2020), "A semi-analytical finite element method for stress and deformation analyses of bidirectional functionally graded truncated conical shells", Mech. Des. Struct. Mach., 48(4), 433-458. https://doi.org/10.1080/15397734.2019.1636657.
- Wu, C.P. and Jiang, R.Y. (2015), "An asymptotic meshless method for sandwich functionally graded circular hollow cylinders with various boundary conditions", J. Sandw. Struct. Mater., 17(5), 469-510. https://doi.org/10.1177/1099636215577354.
- Wu, C.P. and Liu, Y.C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147(1), 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031.
- Wu, C.P. and Yu, L.T. (2018), "Quasi-3D static analysis of two-directional functionally graded circular plates", Steel Compos. Struct., 27(6), 789-801. https://doi.org/10.12989/scs.2018.27.6.789.
- Zenkour, A.M. (2018), "A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates", Compos. Struct., 185, 821-833. https://doi.org/10.1016/j.compstruct.2017.10.085.
- Zenkour, A.M., Hafed, Z.S. and Radwan, A.F. (2020), "Bending analysis of functionally graded nanoscale plates by using nonlocal mixed variational formula", Mathematics, 8, 1162. https://doi.org/10.3390/math8071162.
- Zenkour, A.M. and Radwan, A.F. (2020), "Nonlocal mixed variational formula for orthotropic nanoplates resting on elastic foundations", Eur. Phys. J. Plus, 135, 493. https://doi.org/10.1140/epjp/s13360-020-00504-7.
- Zhang, R.J. (1994), "Toroidal shells under nonsymmetric loading", Int. J. Solids Struct., 31(19), 2735-2750. https://doi.org/10.1016/0020-7683(94)90227-5.
- Zhang, F. and Redekop, D. (1992), "Surface loading of a thin-walled toroidal shell", Comput. Struct., 43(6), 1019-1028. https://doi.org/10.1016/0045-7949(92)90002-H.