DOI QR코드

DOI QR Code

Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries

  • Hong, Sung Joo (Department of Materials Science and Engineering, College of Engineering, Andong National University) ;
  • Kim, Seong Su (Department of Materials Science and Engineering, College of Engineering, Andong National University) ;
  • Nam, Seunghoon (Department of Materials Science and Engineering, College of Engineering, Andong National University)
  • Received : 2021.01.26
  • Accepted : 2021.01.27
  • Published : 2021.02.26

Abstract

Through a simple filtration process, followed by carbonization within a reductive environment, coffee waste grounds can be transformed into a non-porous hard carbon for use in multiple contexts. This resulting coffee-waste carbon has been evaluated as an eco-friendly and cost-effective replacement for conventional graphite. When compared with different types of carbon, our study found that the coffee-waste carbon fell into the category of hard carbon, as verified from the galvanostatic charge/discharge profiles. The coffee-waste carbon showed a superior rate capability when compared to that of graphite, while compromising smaller capacity at low C rates. During electrochemical reactions, it was also found that the coffee-waste carbon is well exposed to electrolytes, and its disordered characteristic is advantageous for ionic transport which leads to the low tortuosity of Li ions. Finally, the high irreversible capacity (low initial Coulombic efficiency) of the coffee-waste carbon, which if also often observed in amorphous carbon, can be adequately resolved through a solution-based prelithiation process, thereby proving that the coffee-waste carbon material is quite suitable for commercial use as an anode material for quickly-chargeable electrodes.

Keywords

Acknowledgement

This work was supported by a Research Grant of Andong National University.

References

  1. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, and J.-G. Zhang, Nat. Energy, 4, 180 (2019). https://doi.org/10.1038/s41560-019-0338-x
  2. J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter, and R. Schmuch, Adv. Energy Mater., 9, 1803170 (2019). https://doi.org/10.1002/aenm.201803170
  3. Z. Lin, T. Liu, X. Ai, and C. Liang, Nat. Commun., 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8
  4. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  5. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  6. B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  7. B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  8. D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny, J. Mater. Chem. A, 5, 17174 (2017). https://doi.org/10.1039/C7TA03108D
  9. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, Sustain. Energy Fuels, 4, 5387 (2020). https://doi.org/10.1039/D0SE00175A
  10. J. Billaud, F. Bouville, T. Magrini, C. Villevieille, and A. R. Studart, Nat. Energy, 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
  11. C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo, and L. Liu, Carbon, 64, 537 (2013). https://doi.org/10.1016/j.carbon.2013.07.089
  12. J. Yue, X. Zhao, and D. Xia, Electrochem. Commun., 18, 44 (2012). https://doi.org/10.1016/j.elecom.2012.02.001
  13. J. Li, Q, Guo, J. Shi, X. Gao, Z. Feng, and Z. Fan, Carbon, 50, 2045 (2012). https://doi.org/10.1016/j.carbon.2011.12.004
  14. J. C. Arrebola, A. Caballero, L. Hernan, J. Morales, M. Olivares-Martin, and V. Gomez- Serrano, J. Electrochem. Soc., 157, A791 (2010). https://doi.org/10.1149/1.3425728
  15. A. Caballero, L. Hernan, and J. Morales, ChemSusChem 4, 658 (2011). https://doi.org/10.1002/cssc.201000398
  16. B. Campbell, R. Ionescu, Z. Favors, C. S. Ozkan, and M. Ozkan, Sci. Rep., 5, 14575 (2015). https://doi.org/10.1038/srep14575
  17. J. H. Um, Y. Kim, C.-Y. Ahn, J. Kim, Y.-E. Sung, Y.-H. Cho, S.-S. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 9, 163 (2018). https://doi.org/10.5229/JECST.2018.9.3.163
  18. Z. Li, J. Wang, X. Liu, S. Liu, J. Ou, and S. Yang, J, Mater, Chem., 21, 3397 (2011). https://doi.org/10.1039/C0JM02650F
  19. J. Shu, M. Shui, D. Xu, S. Gao, X. Li, Y. Ren, L. Hou, J. Cui, J. Xu, and Z. Zhu, J. Electroanal. Chem., 657, 187 (2011). https://doi.org/10.1016/j.jelechem.2011.03.031
  20. M. C Shin, J. H Kim, S Nam, Y. J Oh, H.-J Jin, C. R Park, Q. Zhang, and S. J Yang, Small, 16, 2003104 (2020). https://doi.org/10.1002/smll.202003104
  21. K Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. Shirley Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Phys. Chem. Lett., 1, 1176 (2010). https://doi.org/10.1021/jz100188d
  22. Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang, S. Lee, H. H. Park, J. Cabana, C. Kim, and B. Park, J. Mater. Chem. A 2, 2023 (2014). https://doi.org/10.1039/C3TA14347C
  23. Y. Liu, L.-Z. Fan, and L. Jiao, J. Mater. Chem. A, 5, 1698 (2017). https://doi.org/10.1039/C6TA09961K
  24. K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.-J. Kim, Carbon, 53, 38 (2013). https://doi.org/10.1016/j.carbon.2012.10.013
  25. D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, Nano Lett., 9, 1752 (2009). https://doi.org/10.1021/nl803279t
  26. C. P. Ewels and M. Glerup, J. Nanosci. Nanotechnol., 5, 1345 (2005). https://doi.org/10.1166/jnn.2005.304
  27. R. J. J. Jansen and H. Vanbekkum, Carbon, 33, 1021 (1995) https://doi.org/10.1016/0008-6223(95)00030-H
  28. Y. Nakayama, F. Soeda, and A. Ishitani, Carbon, 28, 21 (1990). https://doi.org/10.1016/0008-6223(90)90088-G
  29. J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, J. Am. Chem. Soc., 118, 8071 (1996). https://doi.org/10.1021/ja960338m
  30. L. G. Bulusheva, V. Okotrubab, G. Kurenya, H. Zhang, H. Zhang, X. Chen, and H. Song, Carbon, 49, 4013 (2011). https://doi.org/10.1016/j.carbon.2011.05.043
  31. W. Xing, and J. R. Dahn, J. Electroanal. Chem., 144, 1195 (1997) https://doi.org/10.1149/1.1837572
  32. X. Rao, Y. Lou, J. Chen, H. Lu, B. Cheng, W. Wang, H. Fang, H. Li, and S. Zhong, Front. Energy Res., 8 (2020). https://doi.org/10.3389/fenrg.2020.00003
  33. S.Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, and Y. Zhao, Adv. Funct. Mater., 28, 1706294 (2018). https://doi.org/10.1002/adfm.201706294
  34. J. Zhang, H. Zhu, P. Wu, C. Ge, D. Sun, L. Xu, Y. Tang, and Y. Zhou, Nanoscale, 7, 18211 (2015). https://doi.org/10.1039/C5NR05568G
  35. W. Tang, B. M. Goh, M. Y. Hu, C. Wan, B. Tian, X. Deng, and C. Peng, M. Lin, J. Z. Hu, and K. P. Loh, J. Phys. Chem. C, 120, 2600 (2016). https://doi.org/10.1021/acs.jpcc.5b12551
  36. Y. Li, Y. S. Hu, M. M. Titirici, L. Chen, and X. Huang, Adv. Energy Mater., 6, 1600659 (2016). https://doi.org/10.1002/aenm.201600659
  37. E. Buiel and J. R. Dahn, Electrochim. Acta, 45, 121 (1999). https://doi.org/10.1016/S0013-4686(99)00198-X
  38. G. Wang, F. Li, D. Liu, D. Zheng, Y. Luo, D. Qu, T. Ding, and D. Qu, ACS Appl. Mater. Interfaces, 11, 8699 (2019). https://doi.org/10.1021/acsami.8b19416
  39. X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding, C. Abegglen, D. Qiu, and D. Qu, ACS Appl. Mater. Interfaces, 12, 11589 (2020). https://doi.org/10.1021/acsami.9b21417